精英家教网 > 初中数学 > 题目详情
如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为   
【答案】分析:阴影部分的面积等于四边形OAPB的面积减去扇形AOB的面积.
解答:解:连接OA,OB,OP.

根据切线长定理得∠APO=30°,
∴OP=2OA=6,AP=OP•cos30°=3,∠AOP=60°.
∴四边形的面积=2S△AOP=2××3×3=9;扇形的面积是=3π,
∴阴影部分的面积是9-3π.
点评:此题综合运用了切线长定理、切线的性质定理以及30°的直角三角形的性质.关键是熟练运用扇形的面积计算公式,能够把四边形的面积转化为三角形的面积计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,PA、PB切⊙O于点A、B,AC是⊙O的直径,且∠BAC=35°,则∠P=
70
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB切⊙O于A、B,PO及其延长线分别交⊙O于C、D,AE为⊙O的直径,连接AB、AC,下列结论:①
CB
=
DE
;②∠ABP=∠DOE;③AC平分∠PAB;④∠CAB=∠BAE;其中正确的有(  )
A、①②③B、①②③④
C、①②④D、②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB切⊙O于A、B两点,C为优
ACB
一点,已知∠BCA=50°,则∠APB=
80°
80°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2-mx+m-1=0的两个根,求△PCD的周长.

查看答案和解析>>

同步练习册答案