精英家教网 > 初中数学 > 题目详情
如图,已知在等腰梯形ABCD中,AD∥BC,PA=PD,问PB与PC相等吗?为什么?
分析:根据等腰梯形,可以得到AB=DC,∠BAD=∠CDA,结合题意条件可判断△PAB≌△PDC,从而得出PB=PC的结论.
解答:解:PB和PC相等.理由如下:
∵ABCD是等腰梯形,
∴AB=DC,∠BAD=∠CDA,
又∵PA=PD,
∴∠PAD=∠PDA.
∵∠PAB=∠BAD-∠PAD,∠PDC=∠CDA-∠PDA,
∴∠PAB=∠PDC,
在△PAB和△PDC中,
AB=DC
∠PAB=∠PDC
PA=PD

∴△PAB≌△PDC(SAS),
∴PB=PC.
点评:此题考查了等腰梯形的性质、全等三角形的判定与性质,关键在于用好等腰梯形的性质,得出三角形全等的条件,从而得出全等三角形的对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在等腰梯形ABCD中,AB∥CD,AB<CD,AB=10,BC=3.
(1)如果M为AB上一点,且满足∠DMC=∠A,求AM的长;
(2)如果点M在AB边上移动(点M与A,B不重合),且满足∠DMN=∠A,MN交BC延长线于N,设AM=x,CN=y,求y关于x的函数解析式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在等腰梯形ABCD中,AD∥BC.
(1)若AD=5,BC=11,梯形的高是4,求梯形的周长;
(2)若AD=a,BC=b,梯形的高是h,梯形的周长为c.则c=
 

(请用含a、b、h的代数式表示;答案直接写在横线上,不要求证明.)
(3)若AD=3,BC=7,BD=5
2
,求证:AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰梯形ABCD中,CD∥AB,AD=BC,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,求梯形ABCD的周长.

查看答案和解析>>

同步练习册答案