A. | AC=BD=BC | B. | AB=AD=CD | C. | OB=OC,AB=CD | D. | OB=OC,OA=OD |
分析 根据等腰梯形的判定推出即可.
解答 解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;
B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;
C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;
D、∵OB=OC,OA=OD,
∴∠OBC=∠OCB,∠OAD=∠ODA,
在△AOB和△DOC中,
$\left\{\begin{array}{l}{OA=OD}\\{∠AOB=∠DOC}\\{OB=OC}\end{array}\right.$,
∴△AOB≌△DOC(SAS),
∴∠ABO=∠DCO,AB=CD,
同理:∠OAB=∠ODC,
∵∠ABC+∠DCB+∠CDA+∠BAD=360°,
∴∠DAB+∠ABC=180°,
∴AD∥BC,
∴四边形ABCD是梯形,
∵AB=CD,
∴四边形ABCD是等腰梯形.
故选D
点评 本题考查了平行四边形的判定、全等三角形的判定和性质以及等腰梯形的判定的应用,解此题的关键是求出AD∥BC,题目的综合性较强,难度中等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}+1}{2}$a | B. | $\frac{\sqrt{5}-1}{2}$a | C. | ($\sqrt{5}$+1)a | D. | ($\sqrt{5}$-1)a |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0条 | B. | 2条 | C. | 3条 | D. | 无数条 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com