【题目】如图,一次函数y=kx+b(k<0)与反比例函数的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.
【答案】(1);(2).
【解析】
试题分析:(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;
(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.
试题解析:(1)∵点A(4,1)在反比例函数的图象上,∴m=4×1=4,∴反比例函数的解析式为.
(2)∵点B在反比例函数的图象上,∴设点B的坐标为(n,).
将y=kx+b代入中,得:
kx+b=,整理得:,∴4n=,即nk=﹣1①.
令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC=bn=3,∴bn=6②.
∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.
联立①②③成方程组,即,解得:,∴该一次函数的解析式为.
科目:初中数学 来源: 题型:
【题目】(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答
(1)计算:2(x+y)(x﹣y)﹣(x+y)2;
(2)解方程: ;
(3)先化简,再求值:v,在0,1,2三个数中选一个合适的数并代入求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).
(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A. 8.23×10﹣6 B. 8.23×10﹣7 C. 8.23×106 D. 8.23×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】21世纪,纳米技术被广泛应用,纳米是长度计算单位,1纳米=10-9米.VCD光碟的两面有用激光刻成的小凹坑,已知小凹坑的宽度只有0.4微米(1微米=10-6米),请将小凹坑的宽度用纳米作为计算单位表示出来.(结果用科学记数法表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐月上升,第一季度共生产化工原料60万吨,设一、二月份平均增长的百分率相同,均为x,可列出方程为_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com