精英家教网 > 初中数学 > 题目详情
如图,已知点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,点P是直径AB上的点.若⊙O的半径为1.
(1)用尺规在图中作出点P,使MP+NP的值最小(保留作图痕迹,不写作法);
(2)求MP+NP的最小值.
分析:(1)作点M关于直线AB的对称点M′,连接M′N交直径AB于点P,则点P即为所求点,M′N的长即为MP+NP的最小值;
(2)连接OM′,ON,先判断出△OM′N的形状,再根据勾股定理求解即可.
解答:解:(1)如图1所示;

(2)如图2,连接OM′,ON,
∵点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,
∴∠BON=360°×
1
12
=30°,
∠M′OB=360°×
1
6
=60°,
∴∠M′ON=90°,
∴△OM′N是等腰直角三角形,
∴M′N=
ON2+OM2
=
12+12
=
2
点评:本题考查的是轴对称-最短路线问题,熟知两点之间,线段最短是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点A是以MN为直径的半圆上一个三等分点,点B是AN的中点,点P是半径ON上的点,若⊙O的半径为1,则AP+BP的最小值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A是以MN为直径的半圆上一个三等分点,点B是
AN
的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为(  )

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川德阳卷)数学(带解析) 题型:解答题

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连结并延交BD于点F,直线CF交AB的延长线于G.
⑴求证:AE·FD=AF·EC;
⑵求证:FC=FB;
⑶若FB=FE=2,求⊙O 的半径r的长.

查看答案和解析>>

同步练习册答案