精英家教网 > 初中数学 > 题目详情
14.一个进水管和与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的函数关系如图所示.
(1)当0≤x≤4时,y关于x的函数解析式为y=5x;
(2)当4<x≤12时,求y关于x的函数解析式;
(3)每分钟进水5升,每分钟出水$\frac{15}{4}$升,从某时刻开始的9分钟时容器内的水量是$\frac{105}{4}$升.

分析 (1)由于从某时刻开始的4分钟内只进水不出水,根据图象可以确定这一段的解析式,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,根据图象利用待定系数法可以确定这一段的函数解析式;
(2)用待定系数法求对应的函数关系式即可;
(3)先根据图象和已知条件分别求出每分钟进水、出水各多少升,再将x=9代入(2)中所求的解析式求出y值得出结论.

解答 解:(1)当0≤x≤4时,y=(20÷4)x=5x,
故答案为y=5x;

(2)当4<x≤12时,设解析式为y=kx+b(k≠0,k,b为常数),
依题意得$\left\{\begin{array}{l}{4k+b=20}\\{12k+b=30}\end{array}\right.$,
解之得:$\left\{\begin{array}{l}{k=\frac{5}{4}}\\{b=15}\end{array}\right.$,
∴y=$\frac{5}{4}$x+15;

(3)根据图象知道:
每分钟进水20÷4=5升,
每分钟出水[(12-4)×5-(30-20)]÷(12-4)=$\frac{15}{4}$升;
∵y=$\frac{5}{4}$x+15,
当x=9时,y=$\frac{5}{4}$×9+15=$\frac{105}{4}$,
∴9分钟时容器内的水量为:$\frac{105}{4}$升.
故答案为5,$\frac{15}{4}$,$\frac{105}{4}$.

点评 此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解下列方程(或不等式)组,并把不等式组的解集表示在数轴上.
(1)$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=2}\\{4x=y+5}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-5<1+2x}\\{3x+2≤4x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,△ABC中,∠B=∠C,点D,E分别是BC,AC的中点,若AC=6,则DE的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)填空:(a-b)(a+b)=a2-b2,(a-b)(a2+ab+b2)=a3-b3
(a-b)(a3+a2b+ab2+b3)=a4-b4
(2)猜想:(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn(其中n为正整数,且n≥1);
(3)利用(2)猜想的结论计算:
29+28+27+…+23+22+2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在下列所给出的坐标中,所表示的点在第一象限的是(  )
A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=(  )
A.28°B.30°C.32°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.求下列各式的商式及余式.
(1)(6x2-x+7)÷(2x-3)
(2)(2x2+3x+1)÷(4x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在平面直角坐标系中,把点(3,-3)向上平移5个单位得到的点的坐标是(3,2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在?ABCD中,∠A=106°,则∠C=106°.

查看答案和解析>>

同步练习册答案