精英家教网 > 初中数学 > 题目详情
(2010•遵义)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为   
【答案】分析:由于点P(2,3)在双曲线y=(k≠0)上,首先利用待定系数法求出k的值,得到反比例函数的解析式,把y=2代入,求出a的值,得到点M的坐标,然后利用待定系数法求出直线OM的解析式,把x=2代入,求出对应的y值即为点C的纵坐标,最后根据三角形的面积公式求出△OAC的面积.
解答:解:∵点P(2,3)在双曲线y=(k≠0)上,
∴k=2×3=6,
∴y=
当y=2时,x=3,即M(3,2).
∴直线OM的解析式为y=x,
当x=2时,y=,即C(2,).
∴△OAC的面积=×2×=
故答案为:
点评:本题考查用待定系数法求函数的解析式及求图象交点的坐标及三角形的面积,属于一道中等综合题.
练习册系列答案
相关习题

科目:初中数学 来源:2011年山东省泰安市中考数学样卷(解析版) 题型:解答题

(2010•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:填空题

(2010•遵义)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为   

查看答案和解析>>

科目:初中数学 来源:2010年贵州省遵义市中考数学试卷(解析版) 题型:填空题

(2010•遵义)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为   

查看答案和解析>>

同步练习册答案