分析 先根据每一个三角形有三个顶点确定出A22所在的三角形,再求出相应的三角形的边长以及A22的纵坐标的长度,即可得解.
解答 解:∵△A1A2A3的边长为2,
∴△A1A2A3的高线为2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∵A1A2与x轴相距1个单位,
∴A3O=$\sqrt{3}$-1,
∴A3的坐标是(0,$\sqrt{3}$-1);
∵22÷3=7…1,
∴A22是第8个等边三角形的第1个顶点,
第8个等边三角形边长为2×8=16,
∴点A22的横坐标为-$\frac{1}{2}$×16=-8,
∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,
∴点A22的纵坐标为-8,
∴点A22的坐标为(-8,-8).
故答案为(-8,-8).
点评 本题是点的变化规律的考查,主要利用了等边三角形的性质,难度不大,第二问确定出点A92所在三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\frac{4\sqrt{5}}{5}$ | C. | 2$\sqrt{5}$ | D. | $\frac{2\sqrt{5}}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com