精英家教网 > 初中数学 > 题目详情
已知二次函数y=
1
2
x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数解析式;
(2)设D为线段OC上的点,满足∠DPC=∠BAC,求点D的坐标.
(1)已知抛物线过A(-3,6),B(-1,0)则有:
9
2
-3b+c=6
1
2
-b+c=0

解得
b=-1
c=-
3
2

∴二次函数的解析式为:y=
1
2
x2-x-
3
2


(2)易知:P(1,-2),C(3,0),
过P作PM⊥x轴于M,
则PM=2,
∵抛物线过C(3,0)和B(-1,0),
∴BC=4,CM=2=PM,
∴∠PCO=45°
同理可求得∠ACB=45°,
∵∠DPC=∠BAC,∠PCO=∠ACB=45°,
∴△DPC△BAC,
DC
BC
=
PC
AC

易求AC=6
2
,PC=2
2
,BC=4
∴CD=
4
3
,OD=3-
4
3
=
5
3

∴D(
5
3
,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-
3
4
x2+
9
4
x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)求直线BC的函数解析式;
(3)点P是直线BC上的动点,若△POB为等腰三角形,请写出此时点P的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB的两直角边OA、OB的长分别是1和3,将△AOB绕O点按逆时针方向旋转90°,至△DOC的位置.
(1)求过C、B、A三点的二次函数的解析式;
(2)若(1)中抛物线的顶点是M,判定△MDC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NPOC,交AC于点P,连接MP,已知动点运动了x秒,△MPA的面积为S.
(1)求点P的坐标.(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值.
(3)当△APM与△ACO相似时,求出点P的坐标.
(4)△PMA能否成为等腰三角形?如能,直接写出所有点P的坐标;如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C.连接AC,BC,A(-3,0),C(0,
3
),且当x=-4和x=2时二次函数的函数值y相等.
(1)求抛物线的解析式;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.
①当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
②抛物线的对称轴上是否存在点Q,使得以B、N、Q为顶点的三角形与△A0C相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
③当运动时间为t秒时,连接MN,将△BMN沿MN翻折,得到△PMN.并记△PMN与△AOC的重叠部分的面积为S.求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在同一直角坐标系内,如果x轴与一次函数y=kx+4的图象以及分别过C(1,0)、D(4,0)两点且平行于y轴的两条直线所围成的图形ABDC的面积为7.
(1)求k的值;
(2)求过F、C、D三点的抛物线的解析式;
(3)线段CD上的一个动点P从点D出发,以1单位/秒的速度沿DC的方向移动(点P不重合于点C),过P点作直线PQ⊥CD交EF于Q.当P从点D出发t秒后,求四边形PQFC的面积S与t之间的函数关系式,并确定t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)己知抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴正半轴交于点C,且
cos∠CAB=
10
10

(1)求抛物线的解析式;
(2)如图(2),己知点H(0,1).问在抛物线上是否存在点G,使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(3),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了一个二次函数的一些取值情况:
x…024
y…3-13
(1)求这个二次函数的解析式,并求出其图象与x轴的交点坐标;
(2)请在如图所示的坐标系中画出这个二次函数的图象;
(3)根据其图象写出x取何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在城市繁华中心地带的商铺内,放置统一尺寸大小的“格子柜”,任何人只需每月支付一定的费用,就可以租用一个柜子寄卖自己的物品,相当于拥有自己的一个“迷你实体店”,“格子店”以投入少、易操作为特点,吸引着众多淘宝店家.
张阿姨有格子柜40个,当每个格子柜的月租金为270元时,恰好全部租出.在此基础上,当每个格子柜的月租金提高10元时,格子柜就少租出一个,且没有租出的一个格子柜每月需支出费用20元,设每个格子柜的月租金为x(x≥270)元,月收益为y元(总收益=格子柜租金收入-未租出格子柜支出费用)
(1)求y关于x的函数关系;
(2)当月租金分别为300元和350元时,张阿姨的月收益分别是多少元?可以出租多少个格子柜?请你简单说明理由;
(3)若张阿姨某月出租格子柜的总收益为11100元,则她这个月出租了多少个格子柜?

查看答案和解析>>

同步练习册答案