精英家教网 > 初中数学 > 题目详情
如图,已知AB∥DE,AB=DE,请你添加一个条件
∠A=∠D
∠A=∠D
,可以根据“ASA”得△ABC≌△DEF;或者添加条件BE=CF,可以根据
SAS
SAS
得到△ABC≌△DEF.
分析:①添加∠A=∠D,首先根据AB∥DE可得∠B=∠DEF,然后根据ASA证明△ABC≌△DEF;
②由BE=CF可得BC=EF,再利用SAS可证明△ABC≌△DEF.
解答:解:①添加∠A=∠D,
∵AB∥DE,
∴∠B=∠DEF,
在△ABC和△DEF中,
∠A=∠D
AB=DE
∠B=∠DEF

∴△ABC≌△DEF(ASA);
故答案为:∠A=∠D;

②∵AB∥DE,
∴∠B=∠DEF
∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF,
在△ABC和△DEF中,
AB=DE
∠B=∠DEF
CB=EF

∴△ABC≌△DEF(SAS).
故答案为:SAS.
点评:此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,已知AB∥DE,∠A=136°,∠C=164°,则∠D的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=DE,BC=EF,∠B=∠E,A、F、C、D在同一条直线上,
(1)求证:EF∥BC;
(2)若AD=10,CF=4,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,请补充完整过程,说明△ABC≌△DEF的理由.
∵AB∥DE
∴∠
A
A
=∠
EDF
EDF

∵BC∥EF
∴∠
F
F
=∠
BCA
BCA
  ( 同 理 )
∵AD=CF   (已知)
∴AD+CD=CF+CD
AC
AC
=
DF
DF

在△ABC和△DEF中

∴△ABC≌△DEF
(ASA)
(ASA)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB∥DE,∠B=80°,CM平分∠BCE,求∠DCM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB∥DE,∠B=80°,CM平分∠BCD,CM⊥CN,垂足为C.求∠NCE的度数.

查看答案和解析>>

同步练习册答案