精英家教网 > 初中数学 > 题目详情
已知,四边形ABCD中,∠BAD=60°,AB=AC=AD,对角线AC平分∠BAD,直角三角板30°角的顶点与A点重合,
(1)如图,当三角板的两边分别与BC、CD交于E、F时,通过观察或测量,猜想线段BE和CF之间的数量关系,并证明;
(2)如图,当三角板的两边分别与BC、CD的延长线交于E、F时,通过观察或测量,猜想线段BE和CF之间的数量关系,并证明.
分析:(1)求出∠BAC=∠EAF=30°,∠B=∠ACD,推出∠BAE=∠CAF,根据AAS证△BAE和△CAF全等即可;
(2)与(1)类似,推出∠BAE=∠CAF,根据ASA证△BAE和△CAF全等即可.
解答:(1)线段BE和CF之间的数量关系是BE=CF,
证明:∵AC平分∠BAD,∠BAD=60°,
∴∠BAC=∠CAD=30°,
∵∠EAF=30°,
∴∠BAC-∠EAC=∠EAF-∠EAC,
即∠BAE=∠CAF,
∵AB=AC=AD,
∴∠B=∠ACB=
1
2
(180°-∠BAC)=75°,
同理∠ACD=∠D=75°,
∴∠B=∠ACD,
在△BAE和△CAF中
∠B=∠ACD
∠BAE=∠CAF
AB=AC

∴△BAE≌△CAF,
∴BE=CF.

(2)线段BE和CF之间的数量关系是BE=CF,
证明:∵∠BAC=∠EAF=30°,
∴∠BAC+∠CAE=∠EAF+∠CAE,
即∠BAE=∠CAF,
在△BAE和△CAF中
∠BAE=∠CAF
AB=AC
∠B=∠ACD

∴△BAE≌△CAF,
∴BE=CF.
点评:本题考查了含30度角的直角三角形,角平分线性质,全等三角形的性质和判定,等式的性质,三角形的内角和定理,等腰三角形的性质等知识点,主要考查学生综合运用这些性质进行分析问题和解决问题的能力,此题综合性比较强,但难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);
(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):
①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是
 

②如图4,当四边形ABCD没有等高点时,你得到的一个结论是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知,四边形ABCD是菱形,AC=6,BD=8,求AB的长和菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图:在平行四边形ABCD中,∠B=30°,AE⊥BC于点E,AF⊥DC的延长线于点F,已知平行四边形ABCD的周长为40cm,且AE:AF=2:3.求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,AC与BD相交于点O,AB⊥AC,CD⊥BD.
(1)求证:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形ABCD,E是边AB的中点,联结AC、DE交于点O.记向量
AB
=
a
AD
=
b
,则向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
b
表示).

查看答案和解析>>

同步练习册答案