15£®ÎÒÊÐijÖÐѧ¾ÙÐС°ÖйúÃΕУ԰ºÃÉùÒô¡±¸èÊÖ´óÈü£¬¸ß¡¢³õÖв¿¸ù¾Ý³õÈü³É¼¨£¬¸÷Ñ¡³ö5ÃûÑ¡ÊÖ×é³É³õÖдú±í¶ÓºÍ¸ßÖдú±í¶Ó²Î¼ÓѧУ¾öÈü£¬Á½¸ö¶Ó¸÷Ñ¡³öµÄ5ÃûÑ¡ÊֵľöÈü³É¼¨ÈçͼËùʾ£®
ƽ¾ù·Ö£¨·Ö£©ÖÐλÊý£¨·Ö£©ÖÚÊý£¨·Ö£©
³õÖв¿858585
¸ßÖв¿8580100
£¨1£©¸ù¾ÝͼʾÌîд±í£»
£¨2£©½áºÏÁ½¶Ó³É¼¨µÄƽ¾ùÊýºÍÖÐλÊý½øÐзÖÎö£¬Äĸö¶ÓµÄ¾öÈü³É¼¨½ÏºÃ£¿
£¨3£©¼ÆËãÁ½¶Ó¾öÈü³É¼¨µÄ·½²î£¬²¢ÅжÏÄÄÒ»¸ö´ú±í¶ÓÑ¡Êֳɼ¨½ÏΪÎȶ¨£®

·ÖÎö £¨1£©¸ù¾ÝÌõÐÎͳ¼Æͼ¿ÉÒÔ¼ÆËã³ö³õÖв¿µÄƽ¾ù·ÖºÍÖÚÊýÒÔ¼°¸ßÖв¿µÄÖÐλÊý£»
£¨2£©¸ù¾Ý±í¸ñÖеÄÊý¾Ý£¬¿ÉÒÔ½áºÏÁ½¶Ó³É¼¨µÄƽ¾ùÊýºÍÖÐλÊý£¬ËµÃ÷Äĸö¶ÓµÄ¾öÈü³É¼¨½ÏºÃ£»
£¨3£©¸ù¾Ýͳ¼Æͼ¿ÉÒÔ¼ÆËãËüÃǵķ½²î£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©ÓÉÌõÐÎͳ¼Æͼ¿ÉµÃ£¬
³õÖÐ5ÃûÑ¡ÊÖµÄƽ¾ù·ÖÊÇ£º$\frac{75+80+85+85+100}{5}$=85£¬ÖÚÊýÊÇ85£¬
¸ßÖÐÎåÃûÑ¡Êֵijɼ¨ÊÇ£º70£¬75£¬80£¬100£¬100£¬¹ÊÖÐλÊýÊÇ80£¬
¹Ê´ð°¸Îª£º85£¬85£¬80£»
£¨2£©Óɱí¸ñ¿ÉÖª£¬³õÖв¿Óë¸ßÖв¿µÄƽ¾ù·ÖÏàͬ£¬³õÖв¿µÄÖÐλÊý¸ß£¬¹Ê³õÖв¿¾öÈü³É¼¨½ÏºÃ£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬
s2³õÖÐ=$\frac{£¨75-85£©^{2}+£¨80-85£©^{2}+£¨85-85£©^{2}+£¨85-85£©^{2}+£¨100-85£©^{2}}{5}$=70£¬
s2¸ßÖÐ=$\frac{£¨70-85£©^{2}+£¨75-85£©^{2}+£¨80-85£©^{2}+£¨100-85£©^{2}+£¨100-85£©^{2}}{5}$=160£¬
¡ß70£¼160£¬
¹Ê³õÖв¿´ú±í¶ÓÑ¡Êֳɼ¨±È½ÏÎȶ¨£®

µãÆÀ ±¾Ì⿼²éÌõÐÎͳ¼Æͼ¡¢¼ÓȨƽ¾ùÊý¡¢ÖÚÊý¡¢ÖÐλÊý¡¢·½²î£¬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôÕýÓÐÀíÊýmʹµÃ${x^2}+mx+\frac{1}{9}$ÊÇÒ»¸öÍêȫƽ·½Ê½£¬Ôòm=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªËıßÐÎABCDÊÇÁâÐΣ¬A£¬B£¬C£¬DËĵãµÄ×ø±ê·Ö±ðÊÇ£¨0£¬b£©£¬£¨m£¬m+1£©£¨m£¾0£©£¬£¨e£¬f£©£¬£¨m£¬m+3£©£¬Ö±Ïßy=$\frac{1}{2}$x+4¾­¹ýµãA£¬D£¬ÇóÖ±ÏßCDµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚ?ABCD ÖУ¬µãPÊÇABµÄÖе㣬PQ¡ÎAC½»BCÓÚQ£¬ÔòͼÖÐÓë¡÷APCÃæ»ýÏàµÈµÄÈý½ÇÐÎÓÐ3¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µã£¨5£¬-3£©ËùÔÚµÄÏóÏÞÊÇ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¡Ï1=27¡ã18¡ä£¬¡Ï2=27.18¡ã£¬¡Ï3=27.3¡ã£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¡Ï1=¡Ï3B£®¡Ï1=¡Ï2C£®¡Ï1£¼¡Ï2D£®¡Ï2=¡Ï3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆË㣺½â·½³Ì×é»ò²»µÈʽ×é
£¨1£©$\left\{\begin{array}{l}{3x-5y=6}\\{x+4y=-15}\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}{3x£¾x-2}\\{\frac{x+1}{3}£¾2x}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®³Ì³ÌºÍСÄþÈ¥É̵êÂò±Ê£¬³Ì³ÌÂòµÄÊÇ2Ôª/Ö§µÄAÐͱʣ¬Ð¡ÄþÂòµÄÊÇ2.5Ôª/Ö§µÄBÐͱʣ¬Éè³Ì³ÌÂòÁËxÖ§AÐͱʣ¬Ð¡ÄþÂòÁËyÖ§BÐͱʣ¬¸ù¾ÝͼÖÐÁ½È˵ĶԻ°£¬¿ÉÁз½³Ì×éΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x-y=2}\\{2.5x+2y=17.5}\end{array}\right.$B£®$\left\{\begin{array}{l}{x-y=2}\\{2x+2.5y=17.5}\end{array}\right.$
C£®$\left\{\begin{array}{l}{y-x=2}\\{2x+2.5y=17.5}\end{array}\right.$D£®$\left\{\begin{array}{l}{x+y=2}\\{2.5x+2y=17.5}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®µ¥Ïîʽ3x2m+3ny8Óë-2x2y3m+2nÊÇͬÀàÏÔòm+n=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸