精英家教网 > 初中数学 > 题目详情
3.如图,AD是等边三角形BC边上的高,以AD为边作等边三角形△ADE,连结BE.
求证:BE⊥AE.

分析 根据等边三角形的性质得到AE=AD,AB=AC,∠BAC=∠DAE=60°,于是得到∠EAB=∠DAC,推出△AEB≌△ADC,得到∠AEB=∠ADC=90°,即可得到结论.

解答 解:∵△ABC与△ADE是等边三角形,
∴AE=AD,AB=AC,∠BAC=∠DAE=60°,
∴∠EAB=∠DAC,
在△AEB与△ADC中,
$\left\{\begin{array}{l}{AE=AD}\\{∠EAB=∠DAC}\\{AB=AC}\end{array}\right.$,
∴△AEB≌△ADC,
∴∠AEB=∠ADC,
∵AD是等边三角形BC边上的高,
∴∠ADC=90°,
∴∠AEB=90°,
∴BE⊥AE.

点评 本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知AD⊥BC于D,EG⊥BC于G,∠E=∠3,AD平分∠BAC吗?若平分,请写出推理过程;若不平分,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC中,∠ACB=90°,过点A作射线AP⊥AB,点D是线段AC上一动点(不与点A、C重合),连接BD,过点D作DE⊥BD,交射线AP于点E.
(1)如图①,当∠BAC=45°时,则线段AE与线段CD的数量关系为AE=$\sqrt{2}$CD;
(2)如图②,当∠BAC=30°时,猜想线段AE与线段CD的数量关系,并说明理由;
(3)当∠BAC=α时,直接写出线段AE与线段CD的数量关系(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(如图)AB是⊙O的直径,弦CD⊥AB于点G,E是线段AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P,设⊙O的半径为r,求证:OE•OP=r2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.小军同学拿着边长为acm的等边三角形硬纸片从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在x=b处时,停止滚动,且(a-1)2+|b-5|=0.
(1)求a、b的值.
(2)落在x=b处的点是△ABC的哪个顶点?说明理由.
(3)小军测得△MND的边MN上的高为$\frac{1}{2}$cm,将△MND以每秒3cm的速度沿高的方向向上移动2秒,这时△MND扫过的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)当点D在第一象限的抛物线上运动时,(2)中四边形AEDB的面积是否最大?若是,请说明理由;若不是,请求出四边形AEDB面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个圆柱状的杯子,由内部测得其底面半径为4cm.高为6cm,现有一支11cm的吸管任意斜放于杯中,则吸管露出杯口至少1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知a2-3a-3=0,求代数式$\frac{{a}^{3}}{{a}^{2}+2a+1}$÷(1-$\frac{1}{a+1}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若a<1,则化简1-a+|a-1|等于(  )
A.2-2aB.2aC.2D.0

查看答案和解析>>

同步练习册答案