【题目】如图,长方形的纸片ABCD中,AD=3cm,AB=4cm,把该纸片沿直线AC折叠,点B落在点E处,AE交DC于点F.
(1)图中有等腰三角形吗?说明理由.
(2)求重叠部分(即△ACF)的面积.
【答案】(1)△ACF是等腰三角形.理由见解析;(2).
【解析】
(1)利用矩形性质得AB∥CD,则∠BAC=∠DCA,再根据折叠性质得∠BAC=∠EAC,所以∠EAC=∠DCA,从而可判断△ACF为等腰三角形;
(2)设AF=FC=x,则DF=4﹣x,利用勾股定理得到(4﹣x)2+32=x2,然后求出x,利用三角形面积公式计算即可.
解:(1)△ACF是等腰三角形.
理由:∵四边形ABCD为矩形,
∴AB∥CD,
∴∠BAC=∠DCA,
∵矩形ABCD沿直线AC折叠,点B落在点E处,AE交DC于点F,
∴∠BAC=∠EAC,
∴∠EAC=∠DCA,
∴AF=CF,△ACF为等腰三角形;
(2)设AF=FC=x,则DF=4﹣x,
在Rt△ADF中,DF2+AD2=AF2,即(4﹣x)2+32=x2,
解得:x=,
∴S△ACF=.
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)图2中间的小正方形(即阴影部分)面积可表示为________________.
(2)观察图2,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系式:______________.
(3)根据(2)中的结论,若x+y=-6,xy=2.75,则x-y=____________.
(4)有许多代数恒等式可以用图形的面积来表示.如图3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示为(m+n)(m+2n)=m2+3mn+2n2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图①,在直角三角形中,,于点,可知(不需要证明);
(1)探究:如图②,,射线在这个角的内部,点、在的边、上,且,于点,于点.证明:;
(2)证明:如图③,点、在的边、上,点、在内部的射线上,、分别是、的外角。已知,.求证:;
(3)应用:如图④,在中,,.点在边上,,点、在线段上,.若的面积为15,则与的面积之和为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是( )
A.20°B.19°C.18°D.15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为_____度.(用n来表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,,,M为AB的中点,以CD为直径画圆P.
(1)当点M在圆P外时,求CD的长的取值范围;
(2)当点M在圆P上时,求CD的长;
(3)当点M在圆P内时,求CD的长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.
(1)求这个反比函数的表达式;
(2)求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作出函数y=2-2x的图象,并根据图象回答下列问题:
(1)y的值随x的增大而____,减小而____;
(2)图象与x轴的交点坐标是___;与y轴的交点坐标是____;
(3)函数y=2-2x的图象与坐标轴所围成的三角形的面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com