精英家教网 > 初中数学 > 题目详情

【题目】在阳光下,小东同学测得一根长为米的竹竿的影长为米.

同一时刻米的竹竿的影长为________米.

同一时刻小东在测量树的高度时,发现树的影子不全落在地面上,有一部分落在操场的第一级台阶上,测得落在第一级台阶上的影子长为米,第一级台阶的高为米,落在地面上的影子长为米,则树的高度为________米.

【答案】

【解析】

(1)根据同时同地物高与影长成正比列式计算即可得解;

(2)求出与台阶同等高度的大树的影子的长度,然后根据同时同地物高与影长成正比列式求出树的高度的一部分,再加上台阶的高度计算即可得解.

(1)设同一时刻2米的竹竿的影长为x米,

由题意得,

解得x=0.8,

答:同一时刻2米的竹竿的影长为0.8米;

(2)如图,设台阶高度以上的大树的高度为y米,

台阶高度的影长为4.3+0.1=4.4米,

由题意得,

解得y=11,

所以,树的高度=11+0.3=11.3米.

故答案为:0.8;11.3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AMMN垂直.

(1)证明:△ABM∽△MCN;

(2)△ABM的周长与△MCN周长之比是4:3,求NC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,CE是DCB的角平分线,且交AB于点E,DB与CE相交于点O,

(1)求证:EBC是等腰三角形;

(2)已知:AB=7,BC=5,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对x牵手函数,这个交点为x牵手点

1)一次函数yx1x轴的交点坐标为  ;一次函数yax+2与一次函数yx1为一对x牵手函数,则a 

2)已知一对x牵手函数yax+1ybx1,其中ab为一元二次方程x2kx+k40的两根,求它们的x牵手点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

⑴请你补全这个输水管道的圆形截面;

⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知AOB是等边三角形,点A的坐标是(03),点B在第一象限,∠OAB的平分线交x轴于点P,把AOP绕着点A按逆时针方向旋转,使边AOAB重合,得到ABD,连接DP.求:DP的长及点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于两点,轴交于点.在函数图象上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.

(1)的值;

(2)如图①,连接 线段上的点关于直线的对称点F'恰好在线段BE上,求点的坐标;

(3)如图②,动点在线段上,过点轴的垂线分别与交于点,与抛物线交于点.试问:直线右侧的抛物线上是否存在点,使得的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100A级,75≤x85B级,60≤x75C级,x60D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.

请根据图中的信息,解答下列问题:

1)在这次调查中,一共抽取了   名学生;a   %C级对应的圆心角为   度.

2)补全条形统计图;

3)若该校共有2000名学生,请你估计该校D级学生有多少名?

查看答案和解析>>

同步练习册答案