精英家教网 > 初中数学 > 题目详情
计算和化简:
(1)计算:
8
-2sin45°+(2-π)0-(
1
3
)-1

(2)已知x2-3=5x,求(x-1)(2x-1)-(x+1)2+1的值;
(3)先将
x2+2x
x-1
•(1-
1
x
)
化简,然后请自选一个你喜欢的x值,再求原式的值.
分析:(1)根据二次根式的化简根式
a2
=|a|,以及
ab
=
a
b
(a≥0,b≥0)把原式的第一项化为最简二次根式,第二项利用特殊角的三角函数值化简,第三项根据a0=1(a≠0)进行化简,最后一项利用a-p=
1
ap
(a≠0)进行化简,然后把同类二次根式合并即可得到结果;
(2)把所求式子利用多项式的乘法法则及完全平方公式化简,合并同类项后,由已知的等式得出x2-5x的值,代入化简的式子中即可求出值;
(3)把第一个因式的分子分母分别分解因式,第二个因式通分后,利用同分母分式的减法法则:分母不变只把分子相减进行计算,两因式约分可得出最简结果,选择一个合适的x的值代入化简后的式子中即可求出值.
解答:解:(1)
8
-2sin45°+(2-π)0-(
1
3
)
-1

=2
2
-2×
2
2
+1-3
=2
2
-
2
-2
=
2
-2;

(2)∵x2-3=5x,
∴x2-5x=3,
则(x-1)(2x-1)-(x+1)2+1
=2x2-x-2x+1-(x2+2x+1)+1
=2x2-x-2x+1-x2-2x-1+1
=x2-5x+1
=3+1
=4;

(3)
x2+2x
x-1
•(1-
1
x
)

=
x(x+2)
x-1
x-1
x

=x+2,
当x=2时,原式=x+2=2+2=4.
点评:此题考查了分式的化简求值,实数的运算,以及整式的混合运算,在进行分式化简求值时,加减的关键是通分,通分的关键是找各分母的最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,若分子分母中出现多项式,应将多项式分解因式后再约分.其中第二小题利用了整体代入的思想,第三小题在选择x的值时应注意分式的分母不能为0,即x≠0,且x≠1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算和化简
(3
18
+
1
5
50
-4
1
2
)
÷
32

②先化简,再求值:
a2-2a+1
a-1
-
a2+2a+1
a2+a
,其中a=
1
1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

计算和化简
(1)(ab)5•(ab)2
(2)(x2•xm3÷x2m
(3)a2•a4+(-a23
(4)30-2-3+(-3)2-(
14
)-1

(5)(x-y)3÷(y-x)2
(6)(n-m)3•(m-n)2-(m-n)5

查看答案和解析>>

科目:初中数学 来源: 题型:

计算和化简:
(1)72×32÷(一3)+(-3)2
(2)-14-[2-(-3)2];
(3)(a2-6a-7)-(a2-3a+4);
(4)-2(-3xy+2z)+3(-2xy-5x)

查看答案和解析>>

科目:初中数学 来源:2011年江苏省镇江市实验学校中考数学二模试卷(解析版) 题型:解答题

计算和化简:
(1)计算:
(2)已知x2-3=5x,求(x-1)(2x-1)-(x+1)2+1的值;
(3)先将化简,然后请自选一个你喜欢的x值,再求原式的值.

查看答案和解析>>

同步练习册答案