精英家教网 > 初中数学 > 题目详情
欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.
(1)写出y与x之间的函数关系式.
(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.
(3)能否使猪圈面积为20平方米?说明理由.
(4)你能求出猪圈面积的最大值吗?
(1)根据题意得出:
y=x(12-2x)=-2x 2+12x,

(2)设垂直于墙的边长为xm,
则x(12-2x)=16,
解得x1=2,x2=4,
当x=2时,12-2x=8,
当x=4时,12-2x=4,
所以垂直于墙的边长为2米或4米;

(3)设垂直于墙的边长为ym,
则y(12-2y)=20,
整理得,-2y2+12y-20=0,
△=144-4×(-2)×(-20)=-16<0,
∴此方程无解,
所以不能够围成;

(4)函数可化为:y=x(12-2x)=-2x 2+12x=-2(x-3) 2+18,
因此当x=3时,最大面积为18(米2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(1,0)且与直线y=
3
4
x+3相交于B、C两点,点B在x轴上,点C在y轴上.
(1)求二次函数的解析式及函数的顶点坐标
(2)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△PAB的面积S与x之间的函数关系式,并写出自变量取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c当x=-2时有最大值4,且二次函数图象与直线y=x+1的一个交点为P(m,0),求:
(1)m的值;
(2)二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=-
1
12
x2+
2
3
x+
5
3

(1)请用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-
3
2
t2+12t+30
,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为(  )
A.3sB.4sC.5sD.6s

查看答案和解析>>

同步练习册答案