精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于(  )
A.
225
16
B.
256
15
C.
256
17
D.
289
16

∵AE=4,EF=3,AF=5
∴AE2+EF2=AF2,∴∠AEF=90°
∴∠AEB+∠FEC=90°
∵正方形ABCD
∴∠ABE=∠FCE=90°
∵∠CFE+∠CEF=∠EAB+∠AEB=90°
∴∠FEC=∠EAB
∴△ABE△ECF
∴EC:AB=EF:AE=3:4,即EC=
3
4
AB
=
3
4
BC
∴BE=
BC
4
=
AB
4

∵AB2+BE2=AE2,∴AB2+
AB2
16
=16,AB2=
162
17

∴正方形ABCD面积=AB2=
256
17

故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

四边形ABCD的对角线AC、BD相交于点O,ADBC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个______(填代号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G(保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=______时,S△FGE=S△FBE;当CE=______时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为
2
,则点A的坐标为______,点C的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是正方形内一点,F是正方形外一点,且∠EDC=∠FBC,EC⊥CF.
(1)求证:EC=FC;
(2)当BE:CE=1:2,∠BEC=135°时,求tan∠FBE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,设正方形ABCD的边长为2,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,根据以上规律写出的表达式:an=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若正方形的边长为4,则它的对角线长是______.

查看答案和解析>>

同步练习册答案