精英家教网 > 初中数学 > 题目详情
5.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=$\frac{2}{3}$EH,那么EH的长为$\frac{3}{2}$.

分析 设EH=3x,表示出EF,由AD-EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.

解答 解:如图所示:
∵四边形EFGH是矩形,
∴EH∥BC,
∴△AEH∽△ABC,
∵AM⊥EH,AD⊥BC,
∴$\frac{AM}{AD}=\frac{EH}{BC}$,
设EH=3x,则有EF=2x,AM=AD-EF=2-2x,
∴$\frac{2-2x}{2}=\frac{3x}{3}$,
解得:x=$\frac{1}{2}$,
则EH=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,在平面直角坐标系中,Rt△OAB的顶点A、B的坐标分别是(2,0),(2,4),将△OAB绕点O逆时针方向旋转90°,得到△OA′B′,函数y=$\frac{k}{x}$(x<0)的图象过A′B′的中点C,则k的值为(  )
A.4B.-4C.8D.-8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是(  )
A.该村人均耕地面积随总人口的增多而增多
B.该村人均耕地面积y与总人口x成正比例
C.若该村人均耕地面积为2公顷,则总人口有100人
D.当该村总人口为50人时,人均耕地面积为1公顷

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:$\frac{10}{3}$+($\frac{3}{10}$-$\frac{8}{15}$)÷(-$\frac{7}{20}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知多项式x2+bx+c分解因式为(x-3)(x+1),则b、c的值为(  )
A.b=2,c=3B.b=-4,c=3C.b=-2,c=-3D.b=-4,c=-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算中,正确的是(  )
A.a2•a5=a10B.(a43=a12C.(3a)2=6a2D.a6÷a2=a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2,求证:∠B=∠ADE
(1)请将下面的证明过程补充完整:
证明:∵CD⊥AB,FG⊥AB(已知)
∴∠BDC=90°,∠BGF=90°(垂直定义)
∴∠BDC=∠BGF
∴DC∥GF(同位角相等,两直线平行)
∴FG∥CD(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠DCB(等量代换)
∴DE∥BC(内错角相等,两直线平行)
∴∠B=∠ADE(两直线平行,同位角相等)
(2)你在第(1)小题的证明过程中,应用了哪两个互逆的真命题?请直接写出这一对互逆的真命题.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为10.

查看答案和解析>>

同步练习册答案