精英家教网 > 初中数学 > 题目详情

如图,在半径为6的⊙O中,弦AB的长为数学公式
(1)弦AB所对的圆周角.
(2)若⊙O有一条长为数学公式的弦CD在圆周上运动,当点C与B重合时,求∠ABD的度数;当点C是数学公式的中点时,设CD与AB交于点P,求OP的长.

(1)解:
过O作ON⊥AB于N,连接OA、OB,
由垂径定理得:AN=BN=AB=3
∵在Rt△ONB中,cos∠OBN==
∴∠OBN=30°,∠BON=90°-30°=60°,
∵OA=OB,ON⊥AB,
∴∠AOB=2∠BON=120°,
由圆周角定理得:①∠AEB=∠AOB=60°,
②∠AFB=180°-60°=120°,
答:弦AB所对的圆周角是60°或120°.

(2)解:分为两种情况:
过O作OP⊥CD于P,
由垂径定理得:BP=DP=3
∵在Rt△BPO中,cos∠PBO==
∴∠PBO=45°,
由(1)知:∠OBN=30°,
∴∠ABD=45°+30°=75°;
当D在D′时,∠ABD=45°-30°=15°;
即∠ABD的度数是15°或75°.
连接OC,OD,OP,
∵C是弧AB的中点,
∴OC⊥AB,
∵AB=6,半径为6,
∴BE=AE=3
由勾股定理得:OE=3,
∴CE=6-3=3=OC,
∴AB垂直平分OC,
∴OP=PC,
即△OPC是等腰三角形,且OP=PC;
∵CD=6,OC=OD=6,
∴OC2+OD2=CD2
△COD为等腰直角三角形,
∴∠PCO=45°,
∵△PCO为等腰三角形,
∴∠POC=∠PCO=45°,
∴∠OPC=90°,
即OP⊥CD,
∴在等腰直角△OCD中,DP=CP,
∴CP=CD=3
∴OP=CP=3
答:∠ABD的度数是15°或75°,OP的长是3
分析:(1)过O作ON⊥AB于N,连接OA、OB,由垂径定理求出AN=BN=3,根据cos∠OBN=,求出∠OBN、∠BON,求出∠AOB,根据圆周角定理求出∠AEB和∠AFB即可;
(2)过O作OP⊥CD于P,由垂径定理求出BP=DP,根据cos∠PBO求出∠PBO=45°,由(1)知:∠OBN=30°,代入求出即可;连接OC,OD,OP,求出BE=AE=3,由勾股定理求出OE=3,得出AB垂直平分OC,推出△OPC是等腰三角形,求出△COD为等腰直角三角形,推出∠PCO=45°,求出∠OPC=90°即可.
点评:本题综合考查了锐角三角函数定义,勾股定理及逆定理,直角三角形斜边上中线性质,垂径定理,圆周角定理等知识点的应用,主要考查学生运用这些性质进行推理和计算的能力,注意:每一步都要进行分类讨论啊.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在半径为R的圆中作一内接△ABC,使BC边上的高AD=h(定值),这样的三角形可作出无数个,但AB•AC为定值,其值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在半径为R的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是(  )
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在半径为2的⊙O中,弦AB的长为2
3
,则∠AOB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)如图,在半径为1的扇形AOB中,∠AOB=90°,点P是
AB
上的一个动点(不与点A、B重合),PC⊥OA,PD⊥OB,垂足分别为点C、D,点E、F、G、H分别是线段OD、PD、PC、OC的中点,EF与DG相交于点M,HG与EC相交于点N,联结MN.如果设OC=x,MN=y,那么y关于x的函数解析式及函数定义域为
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步练习册答案