精英家教网 > 初中数学 > 题目详情
9.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为(  )cm2
A.16-8$\sqrt{3}$B.-12+8$\sqrt{3}$C.8-4$\sqrt{3}$D.4-2$\sqrt{3}$

分析 根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.

解答 解:∵两张正方形纸片的面积分别为16cm2和12cm2
∴它们的边长分别为$\sqrt{16}$=4cm,
$\sqrt{12}$=2$\sqrt{3}$cm,
∴AB=4cm,BC=(2$\sqrt{3}$+4)cm,
∴空白部分的面积=(2$\sqrt{3}$+4)×4-12-16,
=8$\sqrt{3}$+16-12-16,
=(-12+8$\sqrt{3}$)cm2
故选B.

点评 本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,扇形OAB的圆心角为124°,C是弧$\widehat{AB}$上一点,则∠ACB=118°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,△ABC中,AD、AE分别是BC边上的中线和高,点F是AB中点,作FH⊥BC于点H,FH与AD的延长线交于点G.若AC=$\sqrt{34}$,tan∠ABC=$\frac{4}{5}$,DE=FH,则HG=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,△ABC中,AB=5,AD=6,AC=13,D为BC的中点,则S△ABC=30.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交BC于E,交CD于F,EG⊥AB于G.
(1)如图1,求证:CF=EG;
(2)如图2,当tan∠EAB=$\frac{1}{2}$,EF=$\sqrt{5}$时,求四边形CFGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是12、9、11、10、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 016后,A、B、C、D、E五个组中的人数依次是11,8,10,9,12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题背景:在△ABC中,AB、BC、AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上:$\frac{7}{2}$.
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别为$\sqrt{5}$a、$\sqrt{8}$a、$\sqrt{17}$a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
探索创新:
(3)若△ABC三边的长分别为$\sqrt{{m}^{2}+16{n}^{2}}$、$\sqrt{9{m}^{2}+4{n}^{2}}$、$\sqrt{16{m}^{2}+4{n}^{2}}$ (m>0,n>0,且m≠n),试运用构图法画出示意图并求出这三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.环岛是为了减少车辆行驶冲突,在多个交通路口交汇的地方设置的交通设施,多为圆形,它使车辆按统一方向行驶,将冲突点转变为通行点,能有效地减少交通事故的发生,如图是该交通环岛的简化模型(因路段FG施工,禁止从路段EF行驶过来的车辆在环岛内通行,只能往环岛外行驶),某时段内该交通环岛的进出机动车辆数如图所示,图中箭头方向表示车辆的行驶方向.
(1)求该时段内路段AB上的机动车辆数x1
(2)求该时段内从F口驶出的机动车辆数x2
(3)若a=10,b=4,求该时段内路段CD上的机动车辆处x3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.某班级劳动时,将全班同学分成n个小组,若每小组10人,则有一组多2人,若每小组12人,则有一组少4人,按下列哪个选项重新分组,能使每组人数相同?(  )
A.4组B.5组C.6组D.7组

查看答案和解析>>

同步练习册答案