精英家教网 > 初中数学 > 题目详情
9.将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E,D分别落在E′,D′点.已知∠AFC=76°,则∠CFD′等于(  )
A.15°B.25°C.28°D.31°

分析 根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.

解答 解:∵折叠前后部分是全等的,
又∵∠AFC+∠AFD=180°,
∴∠AFD′=∠AFD=180°-∠AFC=180°-76°=104°,
∴∠CFD′=∠AFD′-∠AFC=104°-76°=28°.
故选C.

点评 此题主要考查图形的折叠问题,同时考查了互补两角和为180度.折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.一只不透明的袋子中装有颜色分别为红、黄、蓝的球各一个,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为$\frac{1}{3}$;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,通过树状图或表格列出所有等可能性结果,并求两次都是摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知△ABC内接于⊙O,AB是直径,OD⊥BC于点D,延长DO交⊙O于F,连接OC,AF.
(1)求证:△COD≌△BOD;
(2)填空:①当∠1=30°时,四边形OCAF是菱形;
                  ②当∠1=45°时,AB=2$\sqrt{2}$OD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=6,BC=8,tanD=2,点E是射线CD上一动点(不与点C重合),将△BCE沿着BE进行翻折,点C的对应点记为点F.
(1)如图1,当点F落在梯形ABCD的中位线MN上时,求CE的长;
(2)如图2,当点E在线段CD上时,设CE=x,$\frac{{{S_{△BFC}}}}{{{S_{△EFC}}}}$=y,求y与x之间的函数关系式,并写出定义域;
(3)如图3,联结AC,线段BF与射线CA交于点G,当△CBG是等腰三角形时,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,二次函数y=x2-2x+m(m>0)的对称轴与比例系数为5的反比例函数图象交于点A,与x轴交于点B,抛物线的图象与y轴交于点C,且OC=3OB.
(1)求点A的坐标;
(2)求直线AC的表达式;
(3)点E是直线AC上一动点,点F在x轴上方的平面内,且使以A、B、E、F为顶点的四边形是菱形,直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.
(1)求点C的坐标;
(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1?x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.
①求该抛物线的顶点坐标;
②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为150πcm2.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式组:$\left\{\begin{array}{l}{2-3x≥2x-8}\\{\frac{2-x}{3}-2<\frac{x-1}{2}}\end{array}\right.$,把它的解集在数轴上表示出来,并写出这个不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.
(1)求证:∠1+∠2=90°;
(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.

查看答案和解析>>

同步练习册答案