分析 由抛物线与x轴有两个交点得到b2-4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,3)得a-b+c=3,由抛物线的对称轴为直线x=-$\frac{b}{2a}$=-1得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为3,即ax2+bx+c=3,有两个相等的实数根,而当m>3时,方程ax2+bx+c=m没有实数根.
解答 解:∵抛物线与x轴有两个交点,
∴b2-4ac>0,所以①正确;
∵抛物线的顶点为D(-1,3),
∴a-b+c=3,
∵抛物线的对称轴为直线x=-$\frac{b}{2a}$=-1,
∴b=2a,
∴a-2a+c=3,即c-a=3,所以②正确;
∵抛物线的对称轴为直线x=-1,
∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以③正确;
∵抛物线的顶点为D(-1,3),
∵当x=-1时,二次函数有最大值为3,
∴方程ax2+bx+c=3有两个相等的实数根,
∵m≥2,
∴方程ax2+bx+c=m(m>3)没有实数根,所以④错误.
故答案为①②③.
点评 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-$\frac{b}{2a}$;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com