精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠CRt∠,∠ABC=60°DBC边上的点,CD1,将ACD沿直线AD翻折,点C恰好落在直线AB的边上的E处,若P是直线AD上的动点,则PEB的周长最小值是____________ .

【答案】

【解析】

根据折叠和等腰三角形性质得出,E关于AD的对称点为C,即当PD重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BCBE长,代入求出即可.

解:∵沿AD折叠CE重合,

∴∠ACD=AED=90°,AC=AE,∠CAD=EAD

AD垂直平分CE,即CE关于AD对称,CD=DE=1

∴当PD重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE

∵∠DEA=90°,

∴∠DEB=90°,

∵∠ABC=60°,DE=1

BE=BD=,即BC=

∴△PEB的周长的最小值是BC+BE=+=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD沿对角线BD对折,使得点C落在点F处,DFABEAD=8AB=16.

1)求证:DE=BE

2)求SBEF

3)若MN分别为线段CDDB上的动点,直接写出(NC+NM)的最小值___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx2+mx+n的图象经过点P(﹣31),对称轴是直线x=﹣1

1)求mn的值;

2x取什么值时,yx的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.

(1)在如图所示的坐标系中求抛物线的解析式;

(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图16,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式.

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,ABCD,B=90°,若AO=3,BAD=120°,则BC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进AB两种设备,已知:购买1A种设备和2B种设备需要3.5万元;购买2A种设备和1B种设备需要2.5万元.

1)求每台A种、B种设备各多少万元?

2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意,解答问题:

(1)如图1,已知直线y=2x+4x轴、y轴分别交于A、B两点,求线段AB的长.

(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.

(3)在(2)的基础上,若有一点Dx轴上运动,当满足DM=DN时,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:ADE≌△ABF;

(2)填空:ABF可以由ADE绕旋转中心    点,按顺时针方向旋转    度得到;

(3)若BC=8,DE=6,求AEF的面积.

查看答案和解析>>

同步练习册答案