【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c>0;③b2﹣4ac>0;④a﹣b+c<0,其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
科目:初中数学 来源: 题型:
【题目】(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.
(1)求梯子底端B外移距离BD的长度;
(2)猜想CE与BE的大小关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:
3+2=2+2+1=()2+2+1=(+1)2;
5+2=2+2+3=()2+2××+()2=(+)2
(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:
①4+2;②6+4
(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)15﹣(﹣8)+(﹣20)﹣12
(2)2×(﹣3)2﹣4×(﹣3)+15
(3)(﹣)2+|﹣2|3﹣
(4)﹣20+(﹣2)2﹣32+|﹣10|
(5)﹣22×2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小凡把果树林分为两部分,左地块用新技术管理,右地块用老方法管理,管理成本相同,她在左、右两地块上各随机选取20棵果树,按产品分成甲、乙、丙、丁四个等级(数据分组包括左端点不包括右端点),并制作如下两幅不完整的统计图:
(1)补齐左地块统计图,求右地块乙级所对应的圆心角的度数;
(2)比较两地块的产量水平,并说明试验结果;
(3)在左地块随机抽查一棵果树,求该果树产量为乙级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知a+b=5,ab=-2,求代数式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
【答案】(1)27;(2)81.
【解析】
(1)运用整式的加减运算顺序先去括号,再合并同类项,根据乘法的分配律将5a+5b变形为5(a+b),最后代入求值即可;
(2)根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.
(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,
当a+b=5,ab=-2时,
原式=5×5-(-2)=27;
(2)9x27y÷81y=32x33y÷34y=32x-y,
由2x-y-4=0,得2x-y=4,
故原式=34=81.
【点睛】
本题考查了幂的乘方,同底数幂的乘法,整式的混合运算和求值的应用,用了整体代入思想.
【题型】解答题
【结束】
23
【题目】根据要求完成下列题目:
(1)图中有_____块小正方体;
(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com