精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c>0;③b2﹣4ac>0;④a﹣b+c<0,其中正确的个数有(
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:①∵抛物线开口向下,∴a<0,而对称轴在y轴左侧,∴a、b同号,即b<0,正确; ②∵抛物线与y轴的交点在正半轴,∴c>0,正确;
③∵图象与x轴有两个交点,∴b2﹣4ac>0,正确;
④∵由图象可知当x=﹣1时,对应的函数值y=a﹣b+c>0,错误.
故选C.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图1,在AB直线一侧CD两点,在AB上找一点P,使CDP三点组成的三角形的周长最短,找出此点并说明理由.

2)如图2,在AOB内部有一点P,是否在OAOB上分别存在点EF,使得EFP三点组成的三角形的周长最短,找出EF两点,并说明理由.

3)如图3,在AOB内部有两点MN,是否在OAOB上分别存在点EF,使得EFMN,四点组成的四边形的周长最短,找出EF两点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.

(1)求梯子底端B外移距离BD的长度;

(2)猜想CE与BE的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:

3+22+2+1()2+2+1(+1)2

5+22+2+3()2+2××+()2(+)2

(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:

①4+2②6+4

(2)a+4(m+n)2,且amn都是正整数,试求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)15﹣(﹣8)+(﹣20)﹣12

(2)2×(﹣3)2﹣4×(﹣3)+15

(3)(﹣2+|﹣2|3

(4)﹣20+(﹣2)2﹣32+|﹣10|

(5)﹣22×2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小凡把果树林分为两部分,左地块用新技术管理,右地块用老方法管理,管理成本相同,她在左、右两地块上各随机选取20棵果树,按产品分成甲、乙、丙、丁四个等级(数据分组包括左端点不包括右端点),并制作如下两幅不完整的统计图:
(1)补齐左地块统计图,求右地块乙级所对应的圆心角的度数;
(2)比较两地块的产量水平,并说明试验结果;
(3)在左地块随机抽查一棵果树,求该果树产量为乙级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知a+b=5,ab=-2,求代数式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

【答案】(1)27;(2)81.

【解析】

(1)运用整式的加减运算顺序先去括号,再合并同类项,根据乘法的分配律将5a+5b变形为5(a+b),最后代入求值即可

(2)根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.

(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab

a+b=5ab=-2时,

原式=5×5-(-2)=27;

(2)9x27y÷81y=32x33y÷34y=32x-y

2x-y-4=02x-y=4

故原式=34=81.

【点睛】

本题考查了幂的乘方,同底数幂的乘法,整式的混合运算和求值的应用,用了整体代入思想.

型】解答
束】
23

【题目】根据要求完成下列题目:

(1)图中有_____块小正方体;

(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;

(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为____

查看答案和解析>>

同步练习册答案