精英家教网 > 初中数学 > 题目详情

阅读(1)的推导并填空,然后解答第(2)题.
(1)当a<0,∵ax2+bx+c=a(x+数学公式2+A(2),又∵(x+数学公式2≥0,∴a(x+数学公式2≤0,ax2+bx+c=a(x+数学公式2+A≤A,即:无论x怎样变化,y=ax2+bx+c(a<0)的所有取值中,以A为最大;且在x=B时,y的值等于A,其中,用a,b,c表示,A=______,B=______;
(2)为了绿化城市,我市准备在如图的矩形ABCD内规划一块地面,修建一个矩形草坪PQRC.按计划要求,草坪的两边RC与CP分别在BC和CD上,且草坪不能超过文物保护区△AEF的边界EF.经测量知,AB=CD=100m,BC=AD=80m,AE=30m,AF=20m.应如何确定草坪的位置,才能使草坪占地面积最大又符合设计要求并求出这个最大面积(结果保留到个位,解答时可应用(1)的结论)?

解:(1)根据题意:A=,B=-

(2)延长PQ交AE于G,设CP=x,SPQRC=y,
,GQ=
又PQ=PG-GQ=80-=
则y=x•
即:y=-x2+x
∴当x=-时,y最大=≈6017
∴CR=QR=
分析:(1)此题检测学生对配方法的掌握情况及运用配方法求最值的原理,可自行配方求A、B,亦可运用顶点坐标公式直接填写.
(2)显然需列出表示草坪面积的关系式.不妨设CP=x,用含x的式子表示面积y.关键是表示PQ,可延长PQ交AE于G,利用△GEQ∽△AEF,先表示GQ的长,再用PG-GQ=PQ,从而求解.
点评:此题的关键在设其中一边后用它表示另一边的长,要充分运用已知条件,在三角形中构造相似图形,把已知和未知建立联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读以下材料并填空:平面上有n个点(n≥2)且任意三个点不在同一直线上,过这些点作直线一共能作出多少条不同的直线?
分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线,当有5个点时可连成10条直线…
推导:平面上有n个点,因为两点可确定一条直线,所以每个点都可与除本身之外的其余(n-1)个点确定一条直线,即共有
n(n-1)条直线.但因AB与BA是同一条直线,故每一条直线都数了2遍,所以直线的实际总条数为
n(n-1)
2

试结合以上信息,探究以下问题:
平面上有n(n≥3)个点,任意3个点不在同一直线上,过任意3点作三角形,一共能作出多少个不同的三角形?
分析:考察点的个数n和可作出的三角形的个数 sn,发现:(填下表)
点的个数 可连成的三角形的个数
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推导:
平面上有n个点,过不在同一直线上的三点可以确定1个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法.取第三个点C有(n-2)种取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6,即Sn=
n(n-1)(n-2)
6
平面上有n个点,过不在同一直线上的三点可以确定1个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法.取第三个点C有(n-2)种取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

阅读以下材料并填空:平面上有n个点(n≥2)且任意三个点不在同一直线上,过这些点作直线一共能作出多少条不同的直线?
分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线,当有5个点时可连成10条直线…
推导:平面上有n个点,因为两点可确定一条直线,所以每个点都可与除本身之外的其余(n-1)个点确定一条直线,即共有
n(n-1)条直线.但因AB与BA是同一条直线,故每一条直线都数了2遍,所以直线的实际总条数为数学公式
试结合以上信息,探究以下问题:
平面上有n(n≥3)个点,任意3个点不在同一直线上,过任意3点作三角形,一共能作出多少个不同的三角形?
分析:考察点的个数n和可作出的三角形的个数 sn,发现:(填下表)
点的个数可连成的三角形的个数
3________
4________
5________
n________
推导:________.

查看答案和解析>>

科目:初中数学 来源:江苏期末题 题型:解答题

阅读以下材料并填空:平面上有n个点(n≥2)且任意三个点不在同一直线上,过这些点作直线一共能作出多少条不同的直线?分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线,当有5个点时可连成10条直线…推导:平面上有n个点,因为两点可确定一条直线,所以每个点都可与除本身之外的其余(n﹣1)个点确定一条直线,即共有n(n﹣1)条直线.但因AB与BA是同一条直线,故每一条直线都数了2遍,所以直线的实际总条数为
试结合以上信息,探究以下问题:平面上有n(n≥3)个点,任意3个点不在同一直线上,过任意3点作三角形,一共能作出多少个不同的三角形?
分析:考察点的个数n和可作出的三角形的个数 sn,发现:(填下表)
推到:                                                                 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,完成材料后问题

课本上推导两个数和完全平方公式给出几何意义,利用图形的面积解释。

如图1,一个边长为的正方形可以看做由

边长为的正方形和边长为的正方形以及长宽分别为的两个长方形构成。

即边长为的正方形的面积有两种算法:以及,由此得到了一个等式: 。由此发现可以利用几何解释代数中的公式。请你参考课本上做法类比的解决下列问题:

现有三种不同类型的长方形地砖长宽如图2所示。若现有A类4块,B类4块,C类2块,请问这些地砖的总面积为_______________________.如果用现有的地砖要拼成一个正方形,则多余1块___________型地砖(填A,B,C);这样的地砖拼法也表示了一个两数和的平方的几何意义,请你用含有的等式写出这两个数的和的平方_________________,并类比阅读材料画图利用所给地砖,画图用图形面积给予几何直观的解释.

查看答案和解析>>

同步练习册答案