【题目】如图,在等腰RtABC中,,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A. B. 2 C. D. 4
【答案】B
【解析】分析:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=BC=8,则OC=AB=4,OP=AB=4,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=4,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.
详解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=4,∴AB=BC=8,∴OC=AB=4,OP=AB=4.
∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=4,∴M点运动的路径为以EF为直径的半圆,∴点M运动的路径长=4π=2π. 故选B.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明元旦节吃完晚饭后6点过还没到7点,他陪他妈到成华区SM广场去买东西,离家时他发现他家的时钟上时针与分针刚好重合,他离家的时间是_______(用几点几分几秒表示,注意“四舍五入”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:菱形ABCD中,∠B=60°,将含60°角的直角三角板的60°角的顶点放到菱形ABCD的顶点A处,两边分别与菱形的边BC,CD交于点F,E.
(1)(如图1)求证:AE=AF;
(2)连结EF,交AC于点H(如图2),试探究AB,AF,AH之间的关系;
(3)若AB=6,EF=2,且CE<DE,求FH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是边长为的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1,B1C1交BC于点D,B1C1交AC于点E,则CE=( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x,点A1的坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1的长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2的长为半径画弧交x轴于点A3,…,按此做法进行下去,则点A6的坐标为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠A=30°.
(1)作线段AB的垂直平分线DE,垂足为点E,交AC于点D,要求用尺规作图,保留作图痕迹,标注有关字母,不要求写作法和证明;
(2)连接BD,直接写出∠CBD的度数;
(3)如果△BCD的面积为4,请求出△BAD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实根,且其中一个根为另一根的2倍,则称这样的方程为“倍根方”,以下关于倍根方程的说法正确的是______(填正确序号)
①方程x2﹣x﹣2=0是倍根方程.
②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0.
③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程.
④若方程ax2+bx+c=0是倍根方程且相异两点M(1+t,s)、N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0必有一个根为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三个顶点的坐标分别为A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)画出△ABC关于坐标原点O成中心对称的△;
(2)将△ABC绕坐标原点O顺时针旋转90°,画出对应的△,
(3)若以、、、为顶点的四边形为平行四边形,请直接写出在第四象限中的坐标____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com