精英家教网 > 初中数学 > 题目详情
7.某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?
(2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?

分析 (1)利用每盆花卉每天售出的盆数×每盆的盈利=每天销售这种花卉的利润,列出方程解答即可;
(2)利用每盆花卉每天售出的盆数×每盆的盈利=每天销售这种花卉的利润y,列出函数关系式解答即可.

解答 解:(1)设每盆花卉应降价x元,根据题意可得:
(40-x)(20+2x)=1200,
解得:x1=10,x2=20,
∵为了增加盈利并尽快减少库存,
∴x=20,
答:若花圃平均每天要盈利1200元,每盆花卉应降价20元;

(2)设每盆花卉降低x元,花圃每天盈利y元,则
y=(40-x)(20+2x)
=-2x2+60x+800
=-2(x-15)2+1250,
由$\left\{\begin{array}{l}{x≥0}\\{40-x>0}\end{array}\right.$,
解得:0≤x<40,
故当x=15时,y最大=1250,
答:每盆花卉降低15元时,花圃每天盈利最多为1250元.

点评 此题主要考查了一元二次方程的应用以及二次函数的应用,正确得出等量关系是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,在等边△ABC中,AB=4,P、M、N分别是BC、CA、AB边上动点,则PM+MN的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:
(1)1-3(x-2)=4;
(2)$\frac{2x+1}{3}$-$\frac{5x-1}{6}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是(  )
A.10$\sqrt{2}$海里B.10$\sqrt{3}$海里C.10$\sqrt{6}$海里D.20$\sqrt{6}$海里

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.分式方程$\frac{x}{x-2}$-1=$\frac{4}{{x}^{2}-4}$的解为x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,△D1A1B1,△A1A2B2,△A2A3B3…,都是若干个直角边长为2的等腰直角三角形,其直角顶点D1,A1,A2…在同一条直线上,分别连接D1B2,D1B3.D1B4…分别与边A1B1,A2B2,A3B3…交于点C1,C2,C3…,D1B3,D1B4,D1B5…与边A1B2,A2B3,A3B4…相交于点D2,D3,D4…,△B1C1D1,△B2C2D2,△B3C3D3…的面积分别记为S1,S2,S3…,则S10=$\frac{1}{55}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一只不透明的袋子中装有颜色分别为红、黄、蓝的球各一个,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为$\frac{1}{3}$;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,通过树状图或表格列出所有等可能性结果,并求两次都是摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是某个几何体的三视图,该几何体是(  )
A.圆锥B.三棱锥C.四棱锥D.四棱柱

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=6,BC=8,tanD=2,点E是射线CD上一动点(不与点C重合),将△BCE沿着BE进行翻折,点C的对应点记为点F.
(1)如图1,当点F落在梯形ABCD的中位线MN上时,求CE的长;
(2)如图2,当点E在线段CD上时,设CE=x,$\frac{{{S_{△BFC}}}}{{{S_{△EFC}}}}$=y,求y与x之间的函数关系式,并写出定义域;
(3)如图3,联结AC,线段BF与射线CA交于点G,当△CBG是等腰三角形时,求CE的长.

查看答案和解析>>

同步练习册答案