精英家教网 > 初中数学 > 题目详情
22、如图,在正方形ABCD中,E是AB边上任一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G.
(1)证明:BE=AG;
(2)当点E是AB边中点时,试比较∠AEF和∠CEB的大小,并说明理由.
分析:根据正方形的性质利用ASA判定△GAB≌△EBC,根据全等三角形的对应边相等可得到AG=BE;利用SAS判定△GAF≌△EAF,从而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB;所以∠AEF=∠CEB.
解答:(1)解:∵四边形ABCD是正方形,
∴∠ABC=90°,∴∠1+∠3=90°,
∵BG⊥CE∠BOC=90°,
∴∠2+∠3=90°,∴∠1=∠2,
在△GAB和△EBC中,
∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,
∴△GAB≌△EBC,(ASA)
∴BE=AG.

(2)解:当点E位于线段AB中点时,∠AEF=∠CEB.
理由如下:当点E位于线段AB中点时,AE=BE,
由(1)知,∵AG=BE,
∴AG=AE,
∵四边形ABCD是正方形,
∴∠GAF=∠EAF=45°,
又∵AF=AF,
∴△GAF≌△EAF,(SAS)
∴∠AGF=∠AEF,
由(1)知,△GAB≌△EBC,
∴∠AGF=∠CEB,
∴∠AEF=∠CEB.
点评:此题主要考查学生对正方形的性质及全等三角形的判定的掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案