分析 (1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°-30°=15°;
(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;
(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;
(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.
解答 解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,
∵∠BAC=45°,
∴∠CAE=45°-30°=15°,
即∠α=15°,
故答案为:15;
(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,
故答案为:45;
(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a-e所示:
①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.
(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;
理由如下:设BD分别交AC、AE于点M、N,
在△AMN中,∠AMN+∠CAE+∠ANM=180°,
∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,
∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,
∵∠C=30°,∠E=45°,
∴∠DBC+∠CAE+∠BDE=180°-75°=105°.
点评 本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com