【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.
【答案】(1)x≠0;(2);
;(3)见解析;(4)①﹣4或﹣
;②函数图象在第一、三象限且关于原点对称;③t<﹣2或t>2.
【解析】
(1)由分母不为0,可得自变量x的取值范围:x≠0.
(2)根据图表可知,m,n分别为当和x=3时的函数值,代入解析式:
即可.
(3)根据描出的点连成平滑的曲线即可.
(4)①观察函数图像,结合(2)中的表格中,当时,x=4或
可得;当
时,x=-4或
.
②观察函数的图象写出函数的一条性质即可(增减性、对称性、图像所在象限等).
③此方程的根可看作和y=t的交点,故方程有两个不相等的实数根可看作是两个函数的图像有两个交点,观察图像可知,当t>2或t<-2时两函数的图像有两个交点,故t的取值范围为:t>2或t<-2.
解:(1)∵x在分母上,
∴x≠0.
故答案为:x≠0.
(2)当x=时,y=x+
=
;
当x=3时,y=x+=
.
故答案为:;
.
(3)连点成线,画出函数图象.
(4)①当y=﹣时,有x+
=﹣
,
解得:x1=﹣4,x2=﹣.
故答案为:﹣4或﹣.
②观察函数图象,可知:函数图象在第一、三象限且关于原点对称.
故答案为:函数图象在第一、三象限且关于原点对称.
③∵x+=t有两个不相等的实数根,
∴t<﹣2或t>2.
故答案为:t<﹣2或t>2.
科目:初中数学 来源: 题型:
【题目】已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax+
cx+b=0的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
写出一个“勾系一元二次方程”;
求证:关于x的“勾系一元二次方程”ax+cx+b=0必有实数根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一个根,且四边形ACDE的周长是
,求△ABC面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题情境)如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
(1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是 .
(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.
(2)(尝试应用)如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.
(3)(拓展延伸)如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).
(1)求一次函数y=kx+2与反比例函数y=的表达式;
(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD的面积为2.
(1)求k的值及x0=4时m的值;
(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=ODDC,若﹣<m<﹣
,求[m2t]值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD中,AB=4,点E,F在对角线BD上,AE∥CF.
(1)求证:△ABE≌△CDF;
(2)若∠ABE=2∠BAE,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图所示,已知中,
的平分线相交于点
,试猜想
与
的关系,并证明.
(2)如图所示,在中,
分别是
的外角平分线,试猜想
与
的关系_____ (直接写结果不要证明)
(3)如图所示,已知为
的角平分线,
为
外角
的平分线,且与
交于点
,试猜想
与
的关系_____ (直接写结果不要证明)
(1) (2)
(3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com