精英家教网 > 初中数学 > 题目详情
19.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为50$\sqrt{3}$m(结果保留根号).

分析 先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.

解答 解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=100m,
在Rt△ABD中,
AB=AD•sin∠ADB=100×$\frac{\sqrt{3}}{2}$=50$\sqrt{3}$(m).
故答案是:50$\sqrt{3}$.

点评 本题考查的是解直角三角形的应用-方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,四边形ABCD和四边形DEFG都是正方形,点E,G分别在AD,CD上,连接AF,BF,CF
(1)求证:AF=CF;
(2)若∠BAF=35°,求∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.因式分解:
(1)x2+xy;
(2)x3y-xy3
(3)(x2+y22-4x2y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程组:
(1)$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$                    
(2)$\left\{\begin{array}{l}{3x-2y=6}\\{2x+3y=17}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y=$\frac{1}{2}$x交AB于点D,点P是直线y=$\frac{1}{2}$x位于第一象限上的一点,连接PA,以PA为半径作⊙P,
(1)连接AC,当点P落在AC上时,求PA的长;
(2)当⊙P经过点O时,求证:△PAD是等腰三角形;
(3)设点P的横坐标为m,
①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;
②如图2,记⊙P与直线y=$\frac{1}{2}$x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足$\frac{1}{3}$<$\frac{DE}{DF}$<3时,求m的取值范围.(请直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:c=$\frac{5}{9}$(f-32),试分别求:
(1)当f=68和f=-4时,c的值;
(2)当c=10时,f的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,已知△ABC中,AB=AC,点D是△ABC外的一点(与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.
(1)求证:AD垂直平分BC;
(2)请从A,B两题中任选一题作答,我选择A题.
A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;
B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求代数式($\frac{1}{x+1}$-$\frac{x-2}{{x}^{2}-1}$)÷$\frac{1}{x+1}$的值,其中x=2sin60°+tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)($\sqrt{50}$-$\sqrt{18}$)÷$\sqrt{2}$×$\frac{1}{\sqrt{2}}$
(2)4a2$\sqrt{\frac{1}{8a}}$-7$\sqrt{2{a}^{3}}$
(3)($\sqrt{5}$+5$\sqrt{2}$)(5$\sqrt{2}$-2$\sqrt{5}$)-($\sqrt{5}$-$\sqrt{2}$)2

查看答案和解析>>

同步练习册答案