精英家教网 > 初中数学 > 题目详情
二次函数y=x2+2x-5有
A.最大值-5B.最小值-5C.最大值-6D.最小值-6
D

试题分析:y=x2+2x-5的图像为抛物线开口向上。则只有最小值,没有最大值,排除AC。
而抛物线顶点对应x值为,则把x=-1代入原函数y=-6.故最小值为-6.
点评:本题难度中等,主要考查学生对二次函数图像抛物线性质分析。代入顶点坐标公式求出最小值即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;
(2)求点B的坐标及直线BC的解析式;
(3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴相交于BC两点,与y轴相交于点AP(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过AB两点.

(1)求直线AB的解析式;
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E
①直线x=t(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FGDE=3∶4,求t的值;
②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).

(1)求m的值和抛物线的解析式;
(2)求抛物线的对称轴和顶点坐标;
(3)若此抛物线与y轴交于点C,点P是x轴上的一个动点,当点P到C、B两点的距离之和最小时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某厂销售一种专利产品,现准备从专卖店销售和电视直销两种销售方案中选择一种进行销售.若只是专卖店销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为40元/件,无论销售多少,每月还需支出房租费52500元,设月利润为w(元)(利润 = 销售额-成本-广告费).若只是电视直销,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤80),当月销量为x(件)时,每月还需缴纳x2 元的广告费,设月利润为w(元)(利润 = 销售额-成本-附加费).
(1)当= 1000时,=        元/件,w内 =        元;
(2)分别求出w、wx间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在专卖店销售的月利润最大?若是电视直销月利润的最大值与在专卖店销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在专卖店还是电视直销才能使所获月利润较大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(7,0),点B的坐标为(3,4),

(1)求经过O、A、B三点的抛物线解析式;
(2)将线段AB绕A点顺时针旋转75°至AC,直接写出点C的坐标.
(3)在y轴上找一点P,第一象限找一点Q,使得以O、B、Q、P为顶点的四边形是菱形,求出点Q的坐标;
(4)△OAB的边OB上有一动点M,过M作MN//OA交AB于N,将△BMN沿MN翻折得△DMN,设MN=x,△DMN与△OAB重叠部分的面积为y,求出y与x之间的函数关系式,并求出重叠部分面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把二次函数的图像沿y轴向上平移1个单位长度,与y轴的交点为C,则C点坐标是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)求二次函数y=x2-4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x的增大而减小;
(2)若二次函数y=x2-4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.

查看答案和解析>>

同步练习册答案