·ÖÎö £¨1£©ÏȹÀËã$\sqrt{5}$µÄ·¶Î§£¬ÔÙ¹ÀËã5+$\sqrt{5}$£¬5-$\sqrt{5}$£¬¼´¿ÉÇó³öa£¬bµÄÖµ£¬¼´¿É½â´ð£»
£¨2£©¸ù¾Ý¶þ´Î¸ùʽÓÐÒâÒåµÄÌõ¼þ£¬µÃµ½$\left\{\begin{array}{l}{1-4x¡Ý0}\\{4x-1¡Ý0}\end{array}\right.$£¬Çó³öx£¬yµÄÖµ£¬¼´¿É½â´ð£®
½â´ð ½â£º£¨1£©¡ß$2£¼\sqrt{5}£¼3$£¬
¡à$7£¼5+\sqrt{5}£¼8$£¬$2£¼5-\sqrt{5}£¼3$£¬
¡à5+$\sqrt{5}$µÄСÊý²¿·Öa=5$+\sqrt{5}$-7=$\sqrt{5}$-2£¬5-$\sqrt{5}$µÄÕûÊý²¿·Öb=2£¬
¡àa+$\sqrt{5}$b=$\sqrt{5}$-2+2$\sqrt{5}$=3$\sqrt{5}$-2£®
£¨2£©¸ù¾Ý¶þ´Î¸ùʽµÄÐÔÖʵãº$\left\{\begin{array}{l}{1-4x¡Ý0}\\{4x-1¡Ý0}\end{array}\right.$£¬
½âµÃ£ºx=$\frac{1}{4}$£¬
¡ày=$\frac{1}{2}$£¬
$\sqrt{\frac{x}{y}+2+\frac{y}{x}}$-$\sqrt{\frac{x}{y}-2+\frac{y}{x}}$=$\sqrt{\frac{\frac{1}{4}}{\frac{1}{2}}+2+\frac{\frac{1}{2}}{\frac{1}{4}}}$-$\sqrt{\frac{\frac{1}{4}}{\frac{1}{2}}-2+\frac{\frac{1}{2}}{\frac{1}{4}}}$=$\sqrt{\frac{9}{2}}-\sqrt{\frac{1}{2}}=\frac{3\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˹ÀËãÎÞÀíÊýµÄ´óСºÍ¶þ´Î¸ùʽµÄÐÔÖÊ£¬½â¾ö±¾ÌâµÄ¹Ø¼üÊǹÀËã$\sqrt{5}$µÄ·¶Î§¡¢Êì¼Ç¶þ´Î¸ùʽµÄÐÔÖÊ£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2a4 | B£® | -2a4 | C£® | 8a6 | D£® | -8a6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¶Ô±ßƽÐÐ | B£® | ¶Ô½Ç»¥²¹ | C£® | ¶Ô½ÇÏß»¥Ïàƽ·Ö | D£® | ¶Ô±ßÏàµÈ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com