精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD是正方形, GBC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.给出以下结论:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE-BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.

解:∵四边形ABCD是正方形,
∴AB=AD,AD∥BC,
∵DE⊥AG,BF∥DE,
∴BF⊥AG,
∴∠AED=∠DEF=∠BFE=90°,
∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∴△AED≌△BFA(AAS);故A正确;
∴DE=AF,AE=BF,
∴DE-BF=AF-AE=EF,故B正确;
∵AD∥BC,
∴∠DAE=∠BGF,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠GFB=90°,
∴△BGF∽△DAE,故C正确;
∵DE,BG,FG没有等量关系,
故不能判定DE-BG=FG正确.故D错误(也可以用排除法判断);

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】光明社区为了调查居民对社区服务的满意度,随机抽取了社区部分居民进行问卷调查;用表示“很满意”,表示“满意”,表示“比较满意”,表示“不满意”,如图是根据问卷调查统计资料绘制的两幅不完整的统计图.

请你根据统计图提供的信息解答以下问题:

(1)本次问卷调查共调查了多少个居民?

(2)求出调查结果为的人数,并将直方图中部分的图形补充完整;

(3)如果该社区有居民5000人,请你估计对社区服务感到“不满意”的居民约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.

(1)求证:BC平分∠ABD.

(2)DC=8,BE=4,求圆的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,ABAC∠BAC50°∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的一条角平分线.分别在上,且四边形是正方形.

1)求证:点的平分线上;

2)若,且正方形的面积为4,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).

(1)求抛物线的解析式;

(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.

是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;

∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,ABO绕点A顺时针旋转到AB1C1的位置,BO分别落在点B1C1,B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,C2x轴上,A1B1C2绕点C2顺时针旋转到A2B2C2的位置,A2x轴上,依次进行下去….若点A(,0),B(0,2),B2019的坐标为_____

查看答案和解析>>

同步练习册答案