精英家教网 > 初中数学 > 题目详情
(2008•常德)阅读理解:
若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x-2=0中-2的因数为±1和±2,将它们分别代入方程x3+4x2+3x-2=0进行验证得:x=-2是该方程的整数解,-1,1,2不是方程的整数解.
解决问题:
(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.
【答案】分析:(1)认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”,再作答.
(2)根据分析(1)得出3的因数后再代入检验可得出答案.
解答:解:(1)由阅读理解可知:该方程如果有整数解,它只可能是7的因数,而7的因数只有:1,-1,7,-7这四个数.
(2)该方程有整数解.
方程的整数解只可能是3的因数,即1,-1,3,-3,将它们分别代入方程x3-2x2-4x+3=0
进行验证得:x=3是该方程的整数解.
点评:本题考查同学们的阅读能力以及自主学习、自我探究的能力,该类型的题是近几年的热点考题.
认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”是解答问题的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读理解题:
解不等式
2ax
3
-
3
2
≥1

第一步:4ax-9≥6①
第二步:4ax≥15②
第三步:x≥
15
4a

问:(1)上述解题过程中的第一步叫做
 
,它的理论依据是
 

(2)上述解题过程中从哪一步开始出现错误?请写出该步的代号:
 

(3)错误的原因为
 

(4)本题正确的结论是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、阅读理解题:
“试判断20001999+19992000的末位数字.”
解:∵20001999的末位数是0,而19992的末位数字是1,
则19992000=(199921000的末位数字是1,∴20001999+19992000的末位数字是1.
同学们,根据阅读材料,你能否说明“20002005-19992005的末位数字是多少?”写出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读理解题:
(1)观察各式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
1
30
=
1
5×6
=
1
5
-
1
6
,…
(2)请利用上述规律计算(要求写出计算过程):
1
2
+
1
6
+
1
12
+…+
1
(n-1)n
+
1
n(n+1)

解:原式=
(3)请利用上述规律,解方程:
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

解:原方程可变形如下:

查看答案和解析>>

科目:初中数学 来源:2008年湖南省常德市中考数学试卷(解析版) 题型:解答题

(2008•常德)阅读理解:
若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x-2=0中-2的因数为±1和±2,将它们分别代入方程x3+4x2+3x-2=0进行验证得:x=-2是该方程的整数解,-1,1,2不是方程的整数解.
解决问题:
(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.

查看答案和解析>>

同步练习册答案