精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+2x-3,解答下列问题:
(1)用配方法将该函数解析式化为y=a(x+m)2+k的形式;
(2)指出该函数图象的开口方向、顶点坐标、对称轴,以及它的变化情况.
(1)y=x2+2x+1-4=(x+1)2-4;

(2)∵a=1>0,m=1,k=-4,
∴该函数图象的开口向上;顶点坐标是(-1,-4);对称轴是直线x=-1;
图象在直线x=-1左侧部分是下降的,右侧的部分是上升的.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是(  )
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数(a≠0)的图象经过点A,点B.
(1)求二次函数的表达式;
(2)若反比例函数(x>0)的图象与二次函数(a≠0)的图象在第一象限内交于点落在两个相邻的正整数之间,请你直接写出这两个相邻的正整数;
(3)若反比例函数(x>0,k>0)的图象与二次函数(a≠0)的图象在第一象限内交于点,且,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于二次函数y=-(x-1)2+2,说法不正确的是(  )
A.抛物线开口向下
B.函数值y不可能大于2;
C.函数图象与x轴有两个不同的交点
D.x>0时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+4x+3.
(1)用配方法将y=x2+4x+3化成y=a(x-h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果n-
1
2
≤x<n+
1
2
则<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①<π>=______(π为圆周率);
②如果<2x-1>=3,则实数x的取值范围为______;
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;
②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>=
4
3
x
的所有非负实数x的值;
(4)设n为常数,且为正整数,函数y=x2-x+
1
4
的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<
k
>=n的所有整数k的个数记为b.求证:a=b=2n.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个函数中,y随x增大而减小的是(  )
A.y=2xB.y=-x2+2x-1
C.y=-
3
x
(x>0)
D.y=x2-2x+1(x<1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是(  )
A.抛物线的对称轴是x=1
B.抛物线的开口向下
C.抛物线与x轴的另一个交点是(2,0)
D.当x=1时,y有最大值是3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点A()在抛物线上,则点A关于抛物线对称轴的对称点坐标为
A.(-3,7)B.(-1,7)C.(-4,10)D.(0,10)

查看答案和解析>>

同步练习册答案