分析 (1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.
(2)BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.
(3)同上理,BD=DE+CE仍成立.
解答 证明:(1)∵BD⊥AE于D,CE⊥AE于E,
∴∠ADB=∠AEC=90°.
∵∠BAC=90°,∠ADB=90°,
∵∠ABD+∠BAD=∠CAE+∠BAD=90°,
∴∠ABD=∠CAE
在△ABD 和△CAE中,
∠ABD=∠CAE,∠ADB=∠CEA,AB=AC
∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE
∵AE=AD+DE,
∴BD=DE+CE
(2)解:BD=DE-CE
证明如下:
∵BD⊥AE于D,CE⊥AE于E,
∴∠DAB+∠DBA=90°
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE.
在△DBA和△EAC中,
∠D=∠E=90°,∠DBA=∠CAE,AB=AC
△DBA≌△EAC(AAS)
∴BD=AE,AD=CE
BD=AE=DE-AD=DE-CE
(3)∵BD⊥AE于D,CE⊥AE于E,
∴∠DAB+∠DBA=90°
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE.
在△DBA和△EAC中,
∠D=∠E=90°,∠DBA=∠CAE,AB=AC
△DBA≌△EAC(AAS)
∴BD=AE,AD=CE
又∵ED=AD+AE,
∴DE=BD+CE.
点评 本题考查了全等三角形的判定和性质,涉及到直角三角形的性质、余角和补角的性质等知识点,熟练掌握全等三角形的判定方法是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com