精英家教网 > 初中数学 > 题目详情
4.两车站相距175千米,慢车以每小时50千米的速度从甲站开往乙站,1小时后,快车以每小时75千米的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?

分析 设慢车开出x小时后与快车相遇,则快车行驶了(x-1)小时,根据两地之间的距离=慢车速度×慢车行驶时间+快车速度×快车行驶时间,即可得出关于x的一元一次方程,解之即可得出结论.

解答 解:设慢车开出x小时后与快车相遇,则快车行驶了(x-1)小时,
根据题意得:50x+75(x-1)=175,
解得:x=2.
答:慢车开出2小时后与快车相遇.

点评 本题考查了一元一次方程的应用,根据两地之间的距离=慢车速度×慢车行驶时间+快车速度×快车行驶时间,列出关于x的一元一次方程是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图表示一人骑自行车离家的距离与时间的关系,骑车者9时离开家,15时到家,根据图象回答问题:
(1)到达离家最远的地方是什么时间?离家多远?
(2)第一次休息时离家多远?
(3)返回时的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,设△ABC的面积为1,点D,E,F分别在AB,BC,CA上,AD=$\frac{1}{m}$AB,BE=$\frac{1}{n}$BC,CF=$\frac{1}{p}$CA,且满足m+n+p=9,m2+n2+p2=29.m3+n3+p3=99,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:2$\frac{1}{3}$-(-$\frac{1}{3}$)=2$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.将直线y=3x向下平移3个单位,所得到的直线的函数关系式是y=3x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.填空:把下面的推里过程补充完整,并在括号内注明理由.
如图,已知:△ABC与△ADE均是等腰直角三角形,∠BAC=∠DAE=90°,D在BC上.
求证:BD=CE.
证明:∵△ABC与△ADE均是等腰直角三角形(已知)
∴AB=AC
AD=AE(等腰直角三角形两腰相等)
∵∠BAC=∠DAE=90°(已知)
∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC
∴∠BAD=∠CAE(同角的余角相等)
∴△ABD≌△ACE(SAS)
∴BD=CE(全等三角形的对应边相等)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.8056000用科学记数法表示是8.056×106

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如果将一个小球放在如图所示的地板上自由滚动,小球随机地停留在某块方砖上,那么它停留在黑色区域的概率是$\frac{2}{9}$.

查看答案和解析>>

同步练习册答案