精英家教网 > 初中数学 > 题目详情
已知,P为Rt△ABC的斜边AB上任意一点(除A、B外),过点P作一条直线截△ABC,使得截得的三角形与△ABC相似,满足这样的直线作法共有
[     ]
A、一种
B、两种
C、三种
D、四种
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知点O为Rt△ABC斜边AB上一点,以O为圆心,OA为半径的圆与BC相切于点D,与AB相交于点E.精英家教网
(1)试判断AD是否平分∠BAC?并说明理由.
(2)若BD=3BE,CD=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知点O为Rt△ABC斜边AB上一点,以O为圆心,OA为半径的圆与BC相切于点D,与AB相交于点E,与AC相交于点F.试判断AD是否平分∠BAC.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网精英家教网阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
(     )
(     )
(     )

∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC
 
AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=
1
2
AB

(2)把(1)中的结论用简洁的语言描述出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:CD为Rt△ABC的斜边上的高,且BC=a,AC=b,AB=c,CD=h(如图).求证:
1
a2
+
1
b2
=
1
h2

查看答案和解析>>

科目:初中数学 来源:第35章《圆(二)》中考题集(18):35.3 探索切线的性质(解析版) 题型:解答题

如图,已知点O为Rt△ABC斜边AB上一点,以O为圆心,OA为半径的圆与BC相切于点D,与AB相交于点E.
(1)试判断AD是否平分∠BAC?并说明理由.
(2)若BD=3BE,CD=3,求⊙O的半径.

查看答案和解析>>

同步练习册答案