精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是 . (不再添加辅助线和字母)

【答案】答案不唯一,如AB=AC或∠B=∠C 或∠BED=∠CFD或∠AED=∠AFD
【解析】解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD等; 理由是:①∵AB=AC,
∴∠B=∠C,
根据ASA证出△BED≌△CFD,即可得出DE=DF;
②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;
③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;
④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,
又∵∠BDE=∠CDF,
∴∠B=∠C,
即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;
故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.
答案不唯一根据AB=AC,推出∠B=∠C,根据ASA证出△BED和△CFD全等即可;添加∠BED=∠CDF,根据AAS即可推出△BED和△CFD全等;根据∠AED=∠AFD推出∠B=∠C,根据ASA证△BED≌△CFD即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣1),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长方形OABC在平面直角坐标系内的位置如图所示,将长方形沿BO折叠,使点C落在点D处,DO与AB交于点E,BC=4cm,BA=8cm,则点E的坐标为(
A.(﹣3,4)
B.(﹣3.5,4)
C.(﹣3.7,4)
D.(﹣4,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的解析式为y=﹣2x+2,且l1与x轴交于点D,直线l2经过点A(4,0),B(0,﹣1),两直线交于点C.

(1)点D的坐标为
(2)求直线l2的表达式;
(3)求△ADC的面积;
(4)若有过点C的直线CE把△ADC的面积分为2:1两部分,请直接写出直线CE的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上的点A , 在原点的右侧且到原点的距离等于6,那么A所表示的数是( )
A.6
B.6
C.6或6
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= ,c= ,点B的坐标为 ;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题
甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:4x2﹣12xy+9y2=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.
(1)该班男生和女生各有多少人?
(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

同步练习册答案