精英家教网 > 初中数学 > 题目详情
3.(1)先求出下列各组数据的平均数和方差;
①1,2,3,4,5,6,7,8,9;
②11,12,13,14,15,16,17,18,19,;
③10,20,30,40,50,60,70,80,90.
(2)根据上面的计算结果,你能发现什么规律,按你的发现填写下表:
      数     据平均数方差
 x1,x2,…,xn $\overline{X}$    S2
  x1+a,x2+a,…,xn+a$\overline{x}$+aS2
 mx1,mx2,…,mxnm$\overline{x}$m2S2

分析 (1)先把这组数据的9个数字加起来求和,再除以9即可求出这组数据的平均数,然后再根据方差公式s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2]求解即可;
(2)根据上面的计算结果,得到的规律是一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,平均数变为原数的n倍,它的方差变为原数据的n2倍,然后根据的规律去解题.

解答 解:(1)①(1+2+3+4+5+6+7+8+9)÷9=45÷9=5,S2=$\frac{1}{9}$×(16+9+4+1+1+4+9+16)=$\frac{1}{9}$×60=$\frac{20}{3}$;
②(11+12+13+14+15+16+17+18+19)÷9=135÷9=15,S2=$\frac{1}{9}$×(16+9+4+1+1+4+9+16)=$\frac{1}{9}$×60=$\frac{20}{3}$;
③(10+20+30+40+50+60+70+80+90)÷9=450÷9=50,S2=$\frac{1}{9}$×(1600+900+400+100+100+400+900+1600)=$\frac{1}{9}$×6000=$\frac{2000}{3}$;
(2)规律:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数,方差不变,一组数据中的每一个数都变为原数的n倍,它的平均数变为原数的n倍,它的方差变为原数据的n2倍;
∵x1,x2,…,xn这组数据的平均数是$\overline{x}$,方差是S2
∴x1+a,x2+a,…,xn+a这组数据的平均数是$\overline{x}$+a,方差是S2
mx1,mx2,…,mxn这组数据的平均数是m$\overline{x}$,方差是m2S2
故答案为:$\overline{x}$+a,S2,m$\overline{x}$,m2S2

点评 本题考查了方差,算术平均数,熟记方差公式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.用同样大小的黑色棋子按如图所示的规律摆放:
 
则第5个是18个棋子,第n个是(3n+3)个棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.有一道题:“先化简,再求值:($\frac{x-3}{x+3}$+$\frac{6x}{{x}^{2}-9}$)+$\frac{1}{{x}^{2}-9}$”其中“x=-$\sqrt{2015}$”.小亮同学做题时把“x=-$\sqrt{2015}$”错抄成了“x=$\sqrt{2015}$”,但他的计算结果也是正确的,请你解释这是怎么回事?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知反比例函数y=$\frac{k-3}{x}$的图象在第二、四象限,反比例函数y=$\frac{2k+4}{x}$在x<0时,y随x的增大而减小,则k的取值范围是-2<k<3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知a+b=$\sqrt{5}$,则$\frac{{a}^{2}-{a}^{2}{b}^{2}+{b}^{2}+2ab}{a+ab+b}$+ab等于(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在一所有900名学生的学校随机调查了100人,其中有75人上学前吃早餐,在这所学校里随便问一个人,上学之前吃过早餐的概率是(  )
A.$\frac{1}{9}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列因式分解中,正确的是(  )
A.ax2-ax=x(ax-a)B.x2-y2=(x-y)2
C.a2b2+ab2c+b2=b2(a2+ac+1)D.x2-5x-6=(x-2)(x-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知抛物线y=x2+bx+c,经过点A(0,5)和点B(3,2).
(1)求抛物线的解析式;
(2)指出它的开口方向,对称轴和顶点坐标.

查看答案和解析>>

同步练习册答案