精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC=5,BC=6,P是BC上一点,且BP=2,将一个大小与∠B相等的角的顶点放在P点,然后将这个角绕P点转动,使角的两边始终分别与AB、AC相交,交点为D、E.
(1)求证:△BPD∽△CEP;
(2)是否存在这样的位置,△PDE为直角三角形?若存在,求出BD的长;若不存在,说明理由.
分析:(1)根据等边对等角的性质可得∠B=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式整理求出∠EPC=∠BDP,即可得证;
(2)过点A作AH⊥BC于点H,因为∠DPE=∠B≠90°,所以,分①∠PDE=90°时,利用∠ABH与∠DPE的余弦值相等列式求出
PD
PE
=
3
5
,再根据相似三角形对应边成比例可得
PD
PE
=
BD
PC
,然后代入数据进行计算即可得解;②∠PED=90°时,利用∠ABH与∠DPE的余弦值相等列式求出
PE
PD
=
3
5
,再根据相似三角形对应边成比例可得
PE
PD
=
PC
BD
,然后代入数据进行计算即可得解.
解答:(1)证明:∵AB=AC,
∴∠B=∠C,
∵∠DPC=∠DPE+∠EPC=∠B+∠BDP,
∴∠EPC=∠BDP,
∴△BPD∽△CEP;

(2)解:存在.理由如下:
过点A作AH⊥BC于点H,
∵AB=AC=5,BC=6,
∴BH=
1
2
BC=
1
2
×6=3,
∵∠DPE=∠B≠90°,
∴①如图1,若∠PDE=90°,在Rt△ABH和Rt△PDE中,
∴cos∠ABH=cos∠DPE=
BH
AB
=
PD
PE
=
3
5

∵△PBD∽△PCE,
PD
PE
=
BD
PC

∵BP=2,
∴PC=BC-BP=6-2=4,
BD
4
=
3
5

解得BD=
12
5

②如图2,∠PED=90°时,在Rt△ABH和Rt△PDE中,
∴cos∠ABH=cos∠DPE=
BH
AB
=
PE
PD
=
3
5

∵△PBD∽△PCE,
PE
PD
=
PC
BD
=
3
5

∵PC=4,
4
BD
=
3
5

解得BD=
20
3
>5(舍去),
综上所述,BD的长为
12
5
点评:本题是相似三角形综合题型,主要考查了相似三角形的判定与性质,等角的锐角三角函数值相等,(2)注意要分情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案