精英家教网 > 初中数学 > 题目详情
1.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.
(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;
(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?

分析 (1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;
(2)把x=20代入计算求出y的值,即可得到结果.

解答 解:(1)由长方形面积为2000平方米,得到xy=2000,即y=$\frac{2000}{x}$;
(2)当x=20(米)时,y=$\frac{2000}{20}$=100(米),
则当鱼塘的宽是20米时,鱼塘的长为100米.

点评 此题考查了反比例函数的应用,弄清题意是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.如图,在Rt△ABC中,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF的长为(  )
A.3B.4C.5D.4$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD=∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是BD=CD+AD;
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD-CD=$\sqrt{3}$AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=2x的图象.
类似地,我们可以认识其他函数.
(1)把函数y=$\frac{1}{x}$的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=$\frac{6}{x}$的图象;也可以把函数y=$\frac{1}{x}$的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=$\frac{6}{x}$的图象.
(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移$\frac{1}{2}$个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.
(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x-1)2-2的图象;
(Ⅱ)为了得到函数y=-$\frac{1}{4}$(x-1)2-2的图象,可以把函数y=-x2的图象上所有的点D.
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函数y=$\frac{1}{x}$的图象可以经过怎样的变化得到函数y=-$\frac{2x+1}{2x+4}$的图象?(写出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,将矩形ABCD沿EF折叠,使点B,D重合,已知AB=3,AD=4,则
①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=$\frac{15}{4}$.
上面结论正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=$\sqrt{2}$-1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.

查看答案和解析>>

同步练习册答案