精英家教网 > 初中数学 > 题目详情

如图,△ABC中,DE∥BC,FB,FC分别平分∠B和∠C,已知BC=20,AB=18,AC=16,则△ADE的周长是


  1. A.
    30
  2. B.
    32
  3. C.
    34
  4. D.
    36
C
分析:根据DE∥BC,FB,FC分别平分∠B和∠C,可得:∠DBF=∠FBC=∠DFB,进而得出DF=DB,同理得出EF=EC,所以△ADE的周长为AB+AC,然后根据AB和AC的长度即可求出结果.
解答:∵DE∥BC,
∴∠BFD=∠FBC,∠EFC=∠BCF,
∵FC分别平分∠B和∠C,
∴∠DBF=∠FBC,∠ECF=∠BCF,
∴∠BFD=∠DBF,∠EFC=∠ECF,
∴DF=DB,EF=EC,
∵△ADE的周长=AD+AE+DE,DE=DF+EF,
∴△ADE的周长=AD+BD+AE+EC=AB+AC,
∵AB=18,AC=16,
∴△ADE的周长=34.
故选C.
点评:本题主要考查平行线的性质,角平分线的性质,等腰三角形的判定及性质,三角形的周长,关键在于根据相关的性质定理推出DF=DB,EF=EC,然后进行正确的等量代换求出∴△ADE的周长=AD+BD+AE+EC=AB+AC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案