精英家教网 > 初中数学 > 题目详情
20.二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A的坐标为(-1,0),求二次函数的解析式.

分析 设出抛物线顶点形式,将(-1,0)代入求出a的值,即可确定出抛物线解析式.

解答 解:根据题意设抛物线解析式为:y=ax2-2,
将点A(-1,0)代入,得:a-2=0,
解得:a=2.
故抛物线解析式为:y=2x2-2.

点评 此题考查了待定系数法确定二次函数解析式,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,一次函数y=x+3的图象与轴,y轴交于A,B两点,与反比例函数y=$\frac{4}{x}$的图象相交于C,D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△DCE≌△CDF;
②△AOB∽△FOE;
③△CEF与△DEF的面积相等;
④AC=BD.
其中正确的有①②③④.(只填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.整数a取何值时,分式$\frac{10}{a-1}$的值是正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在正方形ABCD中,E是AD的中点,DF⊥EC于点F,连结AF,则下列四个结论:
①△EDF∽△ECD;②AF平分∠EAC;③AF:AB=$\sqrt{2}$:$\sqrt{5}$;④S△AFC=4S△AEF
其中,正确的是①③④(请将正确结论的序号填在横线上).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若二次函数y=m${x}^{{m}^{2}-m}$的图象开口向下,则m=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若点E是AC的中点,判断BE与AC的位置关系,并说明理由;
(3)若△ABE是等边三角形,AD=$\sqrt{14}$,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.根据下列条件,分别求出对应的二次函数解析式.
(1)已知抛物线的顶点是(1,2),且过点(2,3)
(2)已知二次函数的图象过点(-1,2),(0,1),(2,-7).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一个正比例函数与一个一次函数的图象交于点A(3,4),且0A=0B
(1)求△AOB的面积;
(2)求△AOB三边上的高;
(2)求两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知Rt△ABC,分别以它的直角边AC和斜边AB向外作等边△ACD和等边△ABE,且∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)如图1,求证:四边形AEFD是平行四边形;
(2)如图2,连接EC和BD相交点G,请直接写出图2中与∠EGD相等的所有角(∠EGD除外).

查看答案和解析>>

同步练习册答案