精英家教网 > 初中数学 > 题目详情

【题目】如图所示,△ABC中,ABACAD平分∠BAC,点GBA延长线上一点,点FAC上一点,AGAF,连接GF并延长交BCE

(1)AB8BC6,求AD的长;

(2)求证:GEBC

【答案】(1)(2)证明见解析.

【解析】

1)根据题意可知ADBCBDCD3,再根据勾股定理即可解答

2)根据题意可知GAGF,得到∠G=∠AFG,再通过∠BAC=∠G+AFG2AFG,∠BAC2CAD得到ADEG即可解答

(1)ABACAD平分∠BAC

ADBCBDCD3

RtABD中,AD

(2)GAGF

∴∠G=∠AFG

∵∠BAC=∠G+AFG2AFG,∠BAC2CAD

∴∠AFG=∠CAD

ADEG

ADBC

GEBC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A11)在直线y=kx上,过点A1A1B1y轴交直线y=x于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1D1,直线C1D1分别交直线y=kxy=xA2B2两点,以A2B2为边在A2B2的右侧作等正方形A2B2C2D2…,直线C2D2分别交直线y=kxy=xA3B3两点,以A3B3为边在A3B3的右侧作正方形A3B3C3D3,…,按此规律进行下去,则正方形AnBnCnDn的面积为____________.(用含正整数n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为(  )

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
(1)求证:△ADB≌△AEC;
(2)若AD=2,BD=3,请计算线段CD的长;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(3)证明:△CEF是等边三角形;
(4)若AE=4,CE=1,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:345;三个连续的偶数中的勾股数6810;事实上,勾股数的正整数倍仍然是勾股数.

(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1b2n2+2nc2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的abc的数是一组勾股数.

(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a(m2n2)bmnc(m2+n2)(mn为正整数,mn时,abc构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,ABAC3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PDPE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第2014个内接正方形的边长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0),过(1y1)、(2y2).下列结论:y10时,则a+b+c0 a2b时,则y1y2y10y20,且a+b0,则a0.其中正确的结论个数为(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴相交于A(﹣10),B30),于y轴交于C

1)求该抛物线的解析式;

2)若M是抛物线的对称轴与直线BC的交点,N是抛物线的顶点,求MN的长;

3)若点P是抛物线上点,当SPAB8时,求点P的坐标.

查看答案和解析>>

同步练习册答案