精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣60),点C是抛物线的顶点,且⊙Cy轴相切,点P为⊙C上一动点.若点DPA的中点,连结OD,则OD的最大值是(  )

A.B.C.2D.

【答案】B

【解析】

取点H6,0,连接PH,由待定系数法可求抛物线解析式,可得点C坐标, 可得⊙C半径为4,由三角形中位线的定理可求OD=PH, 当点CPH上时,PH有最大值,即可求解.

如图,取点H6,0),连接PH,

∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),

,

解得:,

∴抛物线解析式为:y=﹣,

∴顶点C(﹣3,4),

∴⊙C半径为4,

AOOH6,ADBD,

ODPH,

PH最大时,OD有最大值,

∴当点CPH上时,PH有最大值,

PH最大值为=3+ 3+,

OD的最大值为: ,

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:

(1)求ab的值;

(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;

(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线:的项点为,交轴于两点(点在点左侧),且

(1)求抛物线的函数解析式;

(2)过点的直线交抛物线于点,交轴于点,若的面积被轴分为1: 4两个部分,求直线的解析式;

(3)在(2)的情况下,将抛物线绕点逆时针旋转180°得到抛物线,点为抛物线上一点,当点的横坐标为何值时,为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与BC重合),以AD为边作菱形ADEFADEF按逆时针排列),使∠DAF=60°,连接CF

1)如图1,当点D在边BC上时,求证:①BD=CF②AC=CF+CD

2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出ACCFCD之间存在的数量关系,并说明理由;

3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出ACCFCD之间存在的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,O为圆心,点C是弧BE的中点,过点CPCAE于点D,交AB的延长线于点P

1)求证:直线PCO的切线;

2)若∠P30°,AD3,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,O为坐标原点,抛物线yax+3)(x1)(a0)与x轴交于AB两点(点A在点B的左侧).

1)求点A与点B的坐标;

2)若a,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.

3)经过点B的直线lykx+by轴正半轴交于点C.与抛物线的另一个交点为点D,且CD4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点BDPQ为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量(件)与销售单价(元)之间的函数关系如图所示.

1)当销售单价定为50元时,求每月的销售件数;

2)设每月获得利润为(元),求每月获得利润(元)关于销售单价(元)的函数解析式;

3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里有四张外形相同的卡片卡片上分别标有数字﹣1135.摸出一张后,记下数字,再放回,摇匀后再摸出一张,记下数字.以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=﹣x+4上的概率是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,BC2ACDEF分别为BCACAB边上的点,BF3AF,∠DFE90°,若△BDF与△FEA的面积比为32,则△CDE与△DEF的面积比为_____

查看答案和解析>>

同步练习册答案