精英家教网 > 初中数学 > 题目详情
(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为
60
60
分析:因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长.
解答:解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=13,AC⊥BD,OB=OD,OA=OC=5,
∴OB=
AB2-OA2
=12,BD=2OB=24,
∵AD∥CE,AC∥DE,
∴四边形ACED是平行四边形,
∴CE=AD=BC=13,DE=AC=10,
∴△BDE的周长是:BD+BC+CE+DE=24+10+26=60.
故答案为:60.
点评:本题主要利考查用菱形的对角线互相垂直平分及勾股定理来解决,关键是根据菱形的性质得出AC⊥BD,从而利用勾股定理求出BD的长度,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•鞍山)如图,矩形ABCD的对角线AC⊥OF,边CD在OE上,∠BAC=70°,则∠EOF等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图,?ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则
S四边形EHFG
S平行四边形ABCD
=
2
9
2
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图:方格纸中的每个小方格都是边长为1个单位的小正方形,四边形ABCD和四边形A1B1C1D1的顶点均在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出四边形ABCD沿y轴正方向平移4格得到的四边形A2B2C2D2,并求出点D2的坐标.
(2)画出四边形A1B1C1D1绕点O逆时针方向旋转90°后得到的四边形A3B3C3D3,并求出A2、B3之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图,在平面直角坐标系中,正方形ABCD的边长为
5
,点A在y轴正半轴上,点B在x轴负半轴上,B(-1,0),C、D两点在抛物线y=
1
2
x2+bx+c上.
(1)求此抛物线的表达式;
(2)正方形ABCD沿射线CB以每秒
5
个单位长度平移,1秒后停止,此时B点运动到B1点,试判断B1点是否在抛物线上,并说明理由;
(3)正方形ABCD沿射线BC平移,得到正方形A2B2C2D2,A2点在x轴正半轴上,求正方形ABCD的平移距离.

查看答案和解析>>

同步练习册答案