分析 (1)根据等边三角形的性质得∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,则∠ABC=∠EBD,于是可利用“SAS”判断△ABC≌△EBD,得到AC=DE,再由△ACF为等边三角形得AC=CF=AF,则AF=DE,同理可证△ACB≌△FCD得到AB=DF,则AE=DF,然后根据平行四边形的判定方法即可得到结论;
(2)由于四边形AEDF是平行四边形,根据菱形的判定方法,当AE=AF时,四边形AEDF是菱形,此时AB=AC.
解答 (1)证明:∵△ABE和△CBD为等边三角形,
∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,
∴∠ABC=∠EBD,
在△ABC和△EBD中
$\left\{\begin{array}{l}{AB=EB}\\{∠ABC=∠EBD}\\{CB=DB}\end{array}\right.$,
∴△ABC≌△EBD,
∴AC=DE,
∵△ACF为等边三角形,
∴AC=CF=AF,
∴AF=DE,
同理可证得△ACB≌△FCD,
∴AB=DF,
而AB=AE,
∴AE=DF,
∴四边形AEDF是平行四边形;
(2)解:△ABC满足AB=AC时,四边形AEDF是菱形.理由如下:
∵四边形AEDF是平行四边形,
∴当AE=AF时,四边形AEDF是菱形,
此时AB=AC,
∴当AB=AC时,四边形AEDF是菱形.
点评 本题考查了菱形的判定:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).也考查了全等三角形的判定与性质、等边三角形的性质和平行四边形的判定.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com